Machine learning in radioterapia: il problema è conquistare la fiducia degli oncologi

L'integrazione di sistemi di machine learning in ambito sanitario deve essere condotto nel rispetto delle procedure decisionali esistenti. Questo è il messaggio principale di un lavoro condotto da un gruppo di ricercatori della University Health Network di Toronto in Canada che hanno sperimentato l'impiego di un algoritmo di machine learning per la pianificazione dei piani di trattamento radioterapici di pazienti con tumore della prostata. Lo studio è stato condotto presso il Princess Margaret Cancer Centre, il maggiore centro oncologico canadese, e ha concluso che i piani generati automaticamente sono clinicamente accettabili nella maggior parte dei casi. Tuttavia, ha anche visto che gli oncologi tendono a scegliere il piano che percepiscono come generato automaticamente meno di frequente se il paziente deve essere ancora trattato, preferendo quello elaborato dai fisici medici. Al contrario, in un contesto retrospettivo, gli oncologi prefeirscono nella grande maggioranza dei casi il piano generato dall'algoritmo rispetto a quello elaborato dai fisici medici.
Nell'immagine un simulatore CT per la pianificazione dei piani di radioterapia. Credit: IAEA Imagebank/Flickr. Licenza: CC BY-NC-ND 2.0.
In ambito medico, sono ormai numerosi gli algoritmi di machine learning, sistemi di apprendimento automatico basato sui dati, sviluppati sia per la diagnosi che per il trattamento di diverse patologie. Finora però la loro efficacia è stata valutata prevalentemente fuori dall’ambiente clinico.







