fbpx Struttura e complessità, dai biopolimeri al citoscheletro cellulare | Scienza in rete

Struttura e complessità, dai biopolimeri al citoscheletro cellulare

Tempo di lettura: 1 min

Jeff Urbach, professore alla Georgetown University e coordinatore del Dynamics Imaging Laboratory in Regents Hall. Photo di Kuna Malik Hamad.

Cosa succede quando un oggetto viene sottoposto a una forza, per esempio una compressione o una spinta? Che eventi si verificano nella sua struttura interna? In che modo materiali diversi si piegano, deformano, spezzano? Domande, queste, al centro dell’attenzione di chi studia fisica dei materiali. Per rispondere alle quali lo studio della complessità è di grande aiuto.

Ne sa qualcosa Jeff Urbach, professore alla Georgetown University e coordinatore del Dynamics Imaging Laboratory, nel quale, insieme ai suoi collaboratori, combina fisica statistica, simulazioni al computer e avanzate tecniche di microscopia per studiare diversi tipi di dinamiche complesse.

Jeff Urbach (Georgetown University) – Intervista realizzata durante il corso Advances in Complex Systems, organizzato a Como dal Centro per la Complessità e i Biosistemi dell’Università di Milano.

Non solo nell’ambito della cosiddetta materia soffice – biopolimeri, idrogel, eccetera… – ma anche in altri campi nei quali la fisica interagisce con la biologia. Anche le cellule, infatti, hanno una loro architettura estremamente complessa, che interagisce sia con i diversi compartimenti interni sia con l’ambiente esterno. Che si tratti di cellule che migrano in un gel o del citoscheletro di un parassita unicellulare che si attacca alle pareti cellulari, i modelli utilizzati da Urbach e dai suoi colleghi consentono di studiare un’ampia serie di temi fondamentali di biofisica e biologia cellulare.

Iscriviti alla newsletter

Le notizie di scienza della settimana

 

No spam, potrai cancellare la tua iscrizione in qualsiasi momento con un click.

 

altri articoli

Durante la pandemia abbiamo ridotto le emissioni di CO2 come mai prima, ma sono già risalite

Un'autostrada solitamente congestionata a Penang, in Malesia, deserta durante il Movement Control Order il 22 marzo 2020. Credit: Wenjay Tew (CC BY-SA 2.0)

La combustione delle fonti fossili e la produzione di cemento sono le due attività umane che contribuiscono maggiormente all’emissione di anidride carbonica nell’atmosfera. Nel 2019 l’emissione globale di biossido di carbonio dovuta a questi processi aveva raggiunto 35 332 milioni di tonnellate, il massimo mai toccato fino ad allora. La pandemia ha causato una frenata mai vista prima: nel 2020 abbiamo emesso globalmente 2 232 milioni di tonnellate in meno, cioè una riduzione del 6,3% rispetto all’anno precedente.