L'evoluzione dei numeri, i numeri dell'evoluzione

Read time: 5 mins

La matematica dell’evoluzione e l’evoluzione della matematica

Le interazioni tra matematica e scienze della vita hanno una storia lunga e avvincente. Esse però non hanno ancora raggiunto la stessa fecondità di quelle tra matematica e fisica. Infatti, mentre è impossibile pensare a molti fondamentali sviluppi della fisica senza la matematica e della matematica senza la fisica, lo stesso non si può dire per la matematica e la biologia. Per dirla con Gian Carlo Rota,

La mancanza di contatto reale tra la matematica e la biologia è una tragedia, uno scandalo o una sfida: è difficile decidere.

Negli ultimi decenni i progressi della biologia molecolare hanno sollecitato l'uso di strumenti matematici del tutto diversi da quelli utilizzati per le applicazioni alla fisica. Innanzitutto si è imposta un'analisi probabilistica di molti fenomeni biologico molecolari che, per la natura stessa dei problemi trattati, hanno carattere discreto e richiedono l'uso di strumenti combinatorici e algebrici. Questo ha portato all'introduzione e, in alcuni casi, alla creazione di raffinate tecniche algebrico-geometriche. Si tratta di un quadro nuovo ed estremamente stimolante che giustifica il titolo di un recente articolo di J.E. Cohen: La matematica è il prossimo microscopio della biologia, ma è migliore. La biologia è la prossima fisica per la matematica, ma è migliore.

La matematica dell'evoluzione

Una disciplina che ci sembra particolarmente interessante per illustrare questi nuovi sviluppi è la filogenetica, cioè la branca della biologia che studia i modelli evolutivi e nasce come disciplina speculativa nell'ambito della teoria di Darwin.

A parte il suo interesse teorico, che consiste nel capire i mecanismi evolutivi delle specie, la filogenetica gode di importanti applicazioni pratiche tra cui: capire dal punto di vista evolutivo lo sviluppo di gravi malattie, come i tumori; prevedere l'evoluzione di differenti ceppi virali allo scopo di determinarne la pericolosità e valutare la possibilità di trovare vaccini efficaci; misurare la distanza evolutiva tra diverse specie al fine di estendere l'efficacia di interventi terapeutici.

La struttura matematica basilare in filogenetica è quella di albero filogenetico. In sostanza si tratta di un albero genealogico che riflette le relazioni di parentela tra le specie. Alla radice dell'albero si trova il comune progenitore, alle foglie un insieme di specie osservate.

La costruzione degli alberi filogenetici si effettua a partire dall'osservazione di caratteri. Accanto a quelli  morfologici, che sono da sempre al centro degli interessi dei biologi, stanno assumendo un’importanza sempre maggiore i caratteri biomolecolari, basati sulle sequenze biologiche. Gli alberi filogenetici si costruiscono sulla base di vari approcci, tra cui i principali sono il principio di massima parsimonia, quello di massima verosimiglianza e il metodo di inferenza bayesiana. Gli ultimi due, a differenza del primo, hanno carattere probabilistico e si basano su modelli stocastici di evoluzione dei caratteri biomolecolari.

La determinazione degli alberi filogenetici che meglio descrivano un dato insieme di osservazioni sperimentali è un problema di enorme complessità, poiché i dati a disposizione sono, tipicamente, lunghi tratti di DNA per molte specie diverse. Da questa mole di dati si richiede di risalire a una struttura abbastanza semplice come l'albero filogenetico. Il compito della matematica è innanzitutto quello di guidare l'estrazione dell'informazione rilevante dalla massa dei dati e di fornire gli strumenti per operare utilmente su questa informazione. Si tratta dunque di trovare dei meccanismi di semplificazione dei dati e di creare algoritmi sufficientemente accurati per la costruzione degli alberi filogenetici.

Un primo meccanismo è quello di sostituire le sequenze biologiche delle varie specie con un numero per ogni coppia di specie, che misuri la “distanza” che le separa. La prima cosa che può venire in mente è di contare le differenze tra le sequenze delle due specie. Questa idea di per sé non funziona perché l'evoluzione dal comune progenitore può portare a tratti uguali del DNA che però sono stati molto diversi nel corso dell'evoluzione. Un'opportuna correzione in termini probabilistici di questa idea porta comunque a definire un'utile “distanza” tra le specie osservate.

Sulla base di questa “distanza” esistono algoritmi efficaci e abbastanza accurati, in prima approssimazione, per la costruzione degli alberi filogenetici, ad esempio l'algoritmo di neighbour joining (NJ).

I metodi basati sulla matrice delle "distanze" sono molto rapidi ma possono essere migliorati ipotizzando opportuni meccanismi probabilistici per l'evoluzione delle sequenze biologiche. Quanto più il meccanismo  è complesso tanto più cresce il costo computazionale per la costruzione degli alberi filogenetici. La ricerca di algoritmi adeguati ad affrontare problemi così  complessi costituisce oggi un fondamentale punto di incontro tra biologia e matematica.

L'evoluzione della matematica

Gli sviluppi di cui abbiamo parlato, hanno sollecitato, e sollecitano tuttora, i matematici a introdurre nuove idee e tecniche per affrontare le sfide delle scienze della vita.

Ad esempio, l'insieme degli alberi filogenetici con date caratteristiche ha anch'esso una struttura matematica, quella di grafo, che è estremamente utile nelle applicazioni biologiche, in particolare nella ricerca dell'albero che meglio spieghi un insieme di dati sperimentali.

L'insieme degli alberi con quattro foglie ha la struttura combinatoria di un famoso grafo: il grafo di Petersen.

Incollando pezzi di rette, di piani, di spazi etc. in accordo con la struttura combinatoria del grafo degli alberi filogenetici, si ottiene un oggetto più complicato ma ancora più utile, lo spazio di Billera-Holmes, che riveste un ruolo cruciale anche in una nuova branca della geometria, la cosiddetta geometria algebrica tropicale. Questa disciplina, che è in crescente sviluppo anche per i suoi collegamenti con la biologia, è basata su una potentissima generalizzazione di una delle idee più semplici e utili della matematica, cioè il logaritmo: l'algebra e la geometria tropicale estraggono da oggetti classici e complicati informazioni semplici, ma importanti, di tipo combinatorio che sono, tra l'altro, facilmente manipolabili con l'uso dei calcolatori.

La fisica teorica contemporanea ha reso necessario lo sviluppo di tecniche matematiche tanto innovative e raffinate da far sì che il fisico Ed Witten, uno dei loro creatori, venisse insignito della medaglia Fields, l'analogo, per la matematica, del Premio Nobel. A conclusione di queste riflessioni possiamo chiederci, in modo forse un po' provocatorio con Bernd Sturmfels, uno dei massimi esperti di geometria tropicale e applicazioni alla filogenetica: Sarà mai possibile che un biologo possa vincere la medaglia Fields?

Per approfondimenti
Ciliberto C., Rogora E., “Applicazioni della geometria algebrica alla biologia”, Lettera Matematica Pristem, n. 70-71 (2009), 4-19.

ritratto di Enrico Rogora Enrico Rogora
Matematica, Università di Roma

altri articoli