fbpx Da fibrosi cistica a distrofia: un gene tira l’altro | Scienza in Rete

Da fibrosi cistica a distrofia: un gene tira l’altro

Tempo di lettura: 3 mins

© Depositphotos.

Alcuni ricercatori di Padova1 hanno pensato di testare se le molecole impiegate per la fibrosi cistica funzionassero anche per una particolare forma di distrofia nota come distrofia muscolare dei cingoli tipo D2. La ragione è presto detta. 

La fibrosi cistica è dovuta alla mutazione di un gene che codifica per la proteina Cystic Fibrosis Transmembrane Regulator (CFTR), con grande maggioranza dei malati in cui la proteina ha una sostituzione a livello dell’aminoacido 508, per cui la mutazione viene denominata F508del. La distrofia muscolare dei cingoli tipo D2 è una rara malattia genetica autosomica recessiva che colpisce i tessuti muscolari striati, dovuta alla mutazione del gene SGCA che codifica per la proteina alfa-sarcoglicano (alfa-SG). In entrambe le malattie la causa è genetica e l’effetto è una proteina che, non essendo ripiegata in modo corretto, non arriva a maturazione e viene degradata dal sistema di controllo della cellula.

Se consideriamo solo i sintomi nulla sembra accomunare le due malattie. Pensando invece al difetto genetico che le provoca, esse sono molto simili: due diverse proteine che non si ripiegano correttamente (difetto di folding) e non raggiungono il sito opportuno (difetto di trafficking).

La fibrosi cistica è in un momento storico davvero unico, in quanto si è trovata una strada farmacologica per colpire il difetto alla base della malattia, ossia il malfunzionamento della proteina CFTR. Gli sforzi della ricerca si stanno moltiplicando, nell’accademia come nell’industria. Recentemente sono stati sviluppati e anche commercializzati, seppur a prezzi esorbitanti, alcune piccole molecole chiamate correttori. In particolare sono stati recentemente scoperti diversi correttori in grado di agire su quella particolare mutazione della fibrosi cistica che provoca il difetto di folding e trafficking. Tra di essi, i correttori di prima generazione sembra avessero come bersaglio specifico la proteina, mentre gli altri correttori non sembrano colpire direttamente la CFTR difettosa, quanto altre proteine che concorrono al difetto di maturazione.

Promettenti correttori

I ricercatori hanno testato 12 molecole che, in base ai dati riportati in letteratura, sembrano in grado di correggere il difetto molecolare. Tra essi il correttore Lumacaftor e l’antinfiammatorio Glafenina, entrambi già in commercio per la più frequente mutazione della fibrosi cistica. Oltre ad essi, sono stati analizzati sulla proteina della distrofia (alfa-SG) altri 10 correttori non commercializzati, 6 dei quali studiati per la prima volta nel 2005 grazie a finanziamenti della Fondazione Ricerca Fibrosi Cistica e Telethon, oltre che dai National Institutes of Health.

I risultati ottenuti mostrano che due dei correttori sono efficaci nel recupero della proteina alfa-SG difettosa, nelle quattro mutazioni considerate. Tra tutti i 12 correttori analizzati, solo uno risulta inefficace. 

Naturalmente siamo ancora a livello di ricerca di base e servono altri studi, ma il lavoro rappresenta un’importante prova di principio di una nuova strategia farmacologica applicabile a una larga coorte di pazienti con la distrofia muscolare dei cingoli del tipo D2. È questo il “bello della ricerca”: studi pensati per uno scopo, eseguiti anni prima da gruppi di ricerca ignari degli sviluppi futuri, possono mostrarsi promettenti punti di partenza per tutt’altre ricerche, egualmente importanti. 

Note
1 Carotti M, Marsolier J., Soardi M., Bianchini E., Gomiero C., Fecchio C., Henriques S.F., Betto R., Sacchetto R., Richard I., Sandonà D., “Repairing folding-defective α-sarcoglycan mutants by CFTR correctors, a potential therapy for limb-girdle muscular dystrophy 2D”, Hum Mol Genet, 2018 Mar 15; 27(6): 969-984.

Iscriviti alla newsletter

Le notizie di scienza della settimana

 

No spam, potrai cancellare la tua iscrizione in qualsiasi momento con un click.

 

altri articoli

Microplastiche ovunque, anche nel sangue

Per la prima volta, uno studio ha rilevato scientificamente microparticelle di plastica nel sangue umano, per la precisione 1,6 µg (microgrammi) per ml di sangue, equivalente a un cucchiaino di plastica ogni mille litri d’acqua. Di certo non una delle migliori notizie che possiamo ricevere dal mondo della ricerca. Ma forse il bello della scienza sta anche nel saper affrontare sfide complesse come questa. Sono infatti diverse le alternative alla plastica che conosciamo grazie alla scienza e di cui ci parla Heather Leslie, coordinatrice del gruppo di ricerca che ha rilevato tracce di microplastiche nel sangue. Crediti immagine: Velizar Ivanov/Unsplash

La minaccia rappresentata dall’inquinamento di plastiche e composti chimici di origine sintetica non è una novità. Fin dall’invenzione della bachelite nel 1907, prima plastica di origine completamente sintetica, l’umanità ha investito sempre di più in ricerca e sviluppo di nuovi polimeri, classe di composti tra cui è possibile trovare anche la plastica.