fbpx I suoni del supersolido | Scienza in rete
SciRe/

I suoni del supersolido

Tempo di lettura: 4 mins
 --

Luca Tanzi ha vinto il Premio giovani ricercatori edizione 2020 categoria Fisica, Matematica, Informatica per il paper:  "Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas", pubblicato su Nature nel 2019. 

Motivazione: il Premio è assegnato a Luca Tanzi per la misura sperimentale degli effetti di superfluidità  in un sistema supersolido realizzato con atomi interagenti tramite forze dipolari a bassissime temperature.


L’esperienza quotidiana insegna che la materia può presentarsi in molteplici stati: può essere solida, liquida o gassosa a seconda dell’intensità delle forze che legano i suoi costituenti elementari. In uno stesso materiale possono coesistere miscelandosi diversi stati della materia: per esempio, acqua in forma liquida e solida (ghiaccio) coesistono a temperature prossime a 0° Celsius. Negli anni ’60 del secolo scorso, alcuni celebri scienziati ipotizzarono l’esistenza di un nuovo stato della materia, chiamato supersolido. Questo materiale combina paradossalmente le proprietà di due diversi stati, il solido e il superfluido (un particolare liquido quantistico capace di scorrere senza attrito). A differenza di una semplice miscela classica, nella quale solido e liquido coesistono in forma distinta, nel supersolido ogni atomo è sia solido che liquido, in un particolare stato detto di sovrapposizione quantistica. In altre parole, ogni atomo del supersolido ha una probabilità finita di formare la struttura rigida (solida) del materiale e contemporaneamente di scorrere da un sito reticolare all’altro. 

Il supersolido è stato cercato per circa cinquant’anni in diversi sistemi fisici, in particolare nell’elio solido, senza successo. Soltanto recentemente, nel laboratorio “Disprosio” presso il CNR-INO di Pisa, abbiamo potuto osservare proprietà supersolide in un sistema reale, raffreddando un campione di atomi fortemente magnetici a temperature prossime allo zero assoluto (circa -273° Celsius). A queste temperature gli atomi condensano in un unico stato quantistico chiamato condensato di Bose-Einstein (BEC), un oggetto coerente con proprietà superfluide. La forza magnetica intrinseca tra gli atomi favorisce lo svilupparsi di una struttura periodica. Per minimizzare l’energia gli atomi si riorganizzano in piccole gocce interconnesse e regolarmente distanziate, senza perdere le proprietà di coerenza quantistica tipiche di una BEC. Gli atomi che compongono queste gocce possono “saltare” da una goccia all’altra, mantenendo così un flusso finito tra le gocce. Il sistema è globalmente rigido, come un solido, in quanto tende a mantenere una spaziatura fissa tra le gocce, mentre il fluido che le avvolge scorre tra le gocce senza resistenza, come in un superfluido, realizzando così un supersolido. 

Per dimostrare l’esistenza del supersolido, abbiamo studiato la propagazione del suono in questo sistema fisico. In generale, quando un sistema si trasforma rompendo spontaneamente una propria simmetria, emergono eccitazioni di lunga durata e bassa energia. Questo meccanismo, introdotto nell’ambito della fisica delle alte energie nei primi anni ’60, è alla base di gran parte della fisica moderna; per esempio, nel modello standard della fisica delle particelle le eccitazioni prodotte da una rottura di simmetria sono vere e proprie particelle, tra cui la celebre particella di Higgs. Il supersolido rompe contemporaneamente due simmetrie: la simmetria traslazionale, in quanto gli atomi si ordinano nello spazio in una struttura regolare, come avviene nei solidi, e una particolare simmetria detta invarianza di fase, poiché gli atomi sviluppano coerenza di fase, come nei superfluidi. Le eccitazioni previste teoricamente per il supersolido corrispondono a onde sonore a bassa frequenza. 

Nell’esperimento, dopo aver “toccato” il supersolido comprimendolo leggermente come una piccola molla, abbiamo studiato le sue oscillazioni periodiche, ascoltandone – figurativamente – il suono. Mentre il solido ed il superfluido ordinari oscillano ognuno con una sola frequenza, il supersolido oscilla contemporaneamente con due frequenze diverse, in un bicordo. Queste due frequenze di oscillazione corrispondono a due diverse onde sonore, e rivelano la rottura contemporanea delle due simmetrie del supersolido. Sperimentalmente è possibile distinguere il suono del solido, dovuto all’oscillazione della struttura cristallina, dal suono del superfluido, dovuto al flusso atomico tra una goccia e l’altra. Le nostre osservazioni sono state confermate dalle previsioni teoriche di uno dei principali gruppi di ricerca italiani.

Il nostro studio dimostra che il supersolido può combinare proprietà generali dei solidi e dei fluidi ritenute finora incompatibili. Ad esempio, un materiale supersolido potrebbe contemporaneamente sopportare un carico, come fanno i solidi, e scorrere senza attrito come un superfluido. Anche se per ora il supersolido esiste solo in laboratorio, ciò che ci insegna può portare allo sviluppo di nuovi materiali e di nuove tecnologie. Questa ricerca rappresenta pertanto un passo importante nella ricerca di materiali quantistici esotici, con proprietà sorprendenti rispetto alla materia ordinaria.

Figura 1. Osservazione sperimentale della supersolidità in un condensato dipolare di Bose-Einstein (BEC). All’aumentare dell’interazione magnetica tra gli atomi, la BEC sviluppa una modulazione periodica mantenendo però proprietà superfluide: entra così nella fase supersolida. Per interazioni magnetici molto grandi, gli atomi perdono coerenza di fase: il supersolido diventa un solido “normale”.

 

Aiuta Scienza in Rete a crescere. Il lavoro della redazione, soprattutto in questi momenti di emergenza, è enorme. Attualmente il giornale è interamente sostenuto dall'Editore Zadig, che non ricava alcun utile da questa attività, se non il piacere di fare giornalismo scientifico rigoroso, tempestivo e indipendente. Con il tuo contributo possiamo garantire un futuro a Scienza in Rete.

E' possibile inviare i contributi attraverso Paypal cliccando sul pulsante qui sopra. Questa forma di pagamento è garantita da Paypal.

Oppure attraverso bonifico bancario (IBAN: IT78X0311101614000000002939 intestato a Zadig srl - UBI SCPA - Agenzia di Milano, Piazzale Susa 2)

altri articoli

Attenzione, nel vaccino c'è la kryptonite!

Vaccini e percezione del rischio: qualche considerazione di Cesare Cislaghi sui timori di alcuni nei confronti del vaccino contro Covid-19, ma anche sul senso di sicurezza che la vaccinazione può indurre, rischiando di far calare l'attenzione per i comportamenti corretti che è comunque necessario tenere.

Crediti immagine: Daniel Schludi/Unsplash

Quella del titolo potrebbe essere una delle tante fake news che sono andate in giro in queste settimane a proposito dei vaccini, e non solo perché la kryptonite è un minerale immaginario che si è sparso nell'universo dopo l'esplosione del pianeta Krypton, il pianeta natale di Superman. La kryptonite aveva l'effetto nocivo e potenzialmente fatale per Superman togliendogli tutti i suoi super poteri.