fbpx G-Quadruplex: il DNA a quattro eliche | Scienza in rete

G-Quadruplex: il DNA a quattro eliche

Primary tabs

Tempo di lettura: 3 mins

Da quando è stato svelato “il segreto della vita”, non c’è immagine più ricorrente della doppia elica di DNA, in cui i suoi due filamenti si avvolgono come una scala a chiocciola. Tuttavia, con uno studio pubblicato il 20 gennaio 2013 su Nature Chemistry, un team di ricercatori dell’Università di Cambridge (Regno Unito) ha fornito una solida prova dell’esistenza, in cellule umane, di strutture di DNA a quadrupla elica.

Ma solo alcune regioni del DNA possono assumere queste insolite conformazioni.
Si tratta delle sequenze ricche di guanina, una delle quattro basi azotate che compongono il DNA. Se quattro di queste sequenze di DNA si trovano a occupare, nello spazio, posizioni adiacenti, è possibile che si formino strutture a quadrupla elica chiamate G-quadruplex. Spesso si tratta di conformazioni stabilizzate da ioni o piccole molecole e si pensa che le quadruple eliche abbiano ruoli regolatori essenziali per la vita della cellula. Tuttavia, le G-quadruplex, sebbene ipotizzate da tempo, sono strutture finora isolate solo in organismi molto semplici1e, ad oggi, la loro esistenza in cellule umane era stata predetta esclusivamente a livello computazionale.

L’equipe di ricerca dell’Università di Cambridge, guidata da Shankar Balasubramanian, ha progettato un anticorpo capace di legare selettivamente strutture G-quadruplex e, allo stesso tempo, incapace di legare la doppia elica. Con questo strumento è stato possibile visualizzare, all’interno di cellule umane tumorali, quali regioni dei cromosomi adottassero la conformazione a G-quadruplex. Lo studio ha confermato che le G-quadruplex si trovano in corrispondenza dei telomeri, le regioni terminali dei cromosomi ricche in guanina, fondamentali per la corretta replicazione del materiale genetico. Eppure solo un quarto delle G-quadruplex osservate occupa queste regioni. Il resto è sparso in tutto il genoma, suggerendo che l’insolita struttura possa essere coinvolta nella regolazione di geni chiave nei processi oncogenetici2.

Fondamentale, a sostegno di quest’ultima ipotesi, il dato, emerso nello stesso studio, che descrive in quali fasi del ciclo cellulare avrebbe luogo la formazione delle G-quadruplex. Nella maggior parte delle cellule tumorali analizzate, le strutture si formano durante e in modo strettamente dipendente dalla replicazione del materiale genetico, cioè a livello della “fase S”, fase che precede la divisione della cellula. L’osservazione è correlabile al ruolo che i G-quadruplex avrebbero nell’oncogensi, spesso innescata da geni che, mutando, aumentano in modo incontrollato la replicazione del DNA e la divisione cellulare3.

Per molto tempo le G-quadruplex sono state considerate “strutture alla ricerca di una funzione”4 e solo recentemente una serie sempre più consistente di prove ne inizia a descrivere il ruolo biologico.

“L’esistenza di queste strutture può essere ricondotta a cellule con certe caratteristiche genetiche o che si trovano in un particolare stato disfunzionale”, sottolinea Shankar Balasubramanian, “ma è una teoria che dobbiamo ancora provare definitivamente. Accertarla, significherebbe individuare un nuovo bersaglio per contrastare farmacologicamente il cancro”.

Sebbene nei precedenti 10 anni di ricerca sulle G-quadruplex alcuni esperimenti5 avessero riconosciuto alla molecola piridostatina un’azione anti-tumorale, è stato solo il recente lavoro condotto da Giulia Biffi – primo nome della pubblicazione – a suggerire come la molecola riuscirebbe a interferire con le G-quadrupolex. La piridostatina, legandosi effettivamente a queste strutture, le destabilizzerebbe interrompendo la proliferazione cellulare che si ipotizza esse controllino. In particolare, “la ricerca sui G-quadruplex ”, aggiunge Balasubramanian, “potrebbe ispirare un nuovo paradigma per terapie personalizzate”. Le prossime ricerche saranno pertanto orientate a localizzare precisamente le G-quadruplex all’interno del genoma, al fine di indagarne in modo sempre più preciso funzione e circuiti che governano.

A sessant’anni dalla caratterizzazione strutturale del DNA, studi come questi dimostrano che la storia della doppia elica continua a stupirci con nuovi “giri e svolte”.

Referenze: 

1 Lipps, H. J. & Rhodes, D., Trends Cell Biol. 19, 414–422 (2009). 
2 Simosson, T.; Pecinka, P.; Kubista, M. “DNA tetraplex formation in the control region of c-myc”. Nucleic Acid Research 26 (5): 1167-1172. (1998) 
3 Jonathan Amos. Quadruple Helix seen in Human Cells. BBC News. Science and Environment. (20 january 2013) 
4 Simonsson, T. “G-quadruplex DNA Structures Variations on a Theme”. Biological Chemistry 382 (4): 621-628 (2001) 
5 Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nature Chem. Biol. 8: 301–310 (2012)


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Fibrosi cistica: una persona su trenta è portatore sano. E non lo sa.

Immagine tratta dalla campagna "Uno su trenta e non lo sai" sul test del portatore sano della fibrosi cistica: persone viste dall'alto camminano su una strada, una ha un ombrello colorato

La fibrosi cistica è una malattia grave, legata a una mutazione genetica recessiva. Se è presente su una sola copia del gene interessato non dà problemi. Se però entrambi i genitori sono portatori sani del gene mutato, possono passare le due copie al figlio o alla figlia, che in questo caso svilupperà la malattia. In Italia sono circa due milioni i portatori sani di fibrosi cistica, nella quasi totalità dei casi senza saperlo. La Fondazione per la Ricerca sulla Fibrosi Cistica sta conducendo una campagna informativa sul test del portatore sano, che consente ai futuri genitori di acquistare consapevolezza del proprio stato.

Se due genitori con gli occhi scuri hanno entrambi un gene degli occhi chiari nel proprio patrimonio genetico, c’è una probabilità su quattro che lo passino entrambi a un figlio e abbiano così discendenza con gli occhi chiari. Questo è un fatto abbastanza noto, che si studia a scuola a proposito dei caratteri recessivi e dominanti, e che fa sperare a molti genitori con gli occhi scuri, ma nonni o bisnonni con gli occhi celesti, di ritrovare nei pargoli l’azzurro degli occhi degli antenati.