Cos'è un gene?

Tempo di lettura: 4 mins

"Nella ricerca spesso sono gli elementi di fortuna, di serendipity, a darti i risultati: cerchi qualcosa e trovi qualcosa di diverso.  Quando capita segui la traccia, arrivando a conclusioni completamente inaspettate e a nuovi risultati",racconta Piero Carninci, uno dei ricercatori che hanno appena pubblicato tre importanti ricerche sulla rivista Nature Genetics.
Questi risultati rappresentano una tappa importante nello sviluppo di quell'ambito di studi chiamato genomica e sono il frutto del progetto Fantom, una grande collaborazione internazionale per lo studio del genoma dei mammiferi, alla quale partecipano gruppi di ricerca in tutto il mondo, tra cui quello dell'italiano Valerio Orlando del Dulbecco Telethon Institute.
Piero Carninci quindici anni fa ha lasciato l'Italia per trasferirsi in Giappone presso il Riken Institute di Yokohama, uno dei principali centri di ricerca giapponesi. Negli ultimi anni è stato uno dei protagonisti della ricerca genomica, pubblicando alcune delle principali scoperte nel campo e contribuendo a cambiare le nostre conoscenze sul funzionamento dei geni.

Quali sono i risultati più rilevanti delle scoperte pubblicate su Nature Genetics?

Un risultato importante riguarda le sequenze ripetute del Dna, come i retrotrasposoni, ritenuti elementi parassiti del genoma. Grazie alle nuove tecnologie disponibili, come il deep sequencing, una tecnica di sequenziamento che permette di ottenere più dati ad un prezzo più basso, abbiamo dimostrato che non sono Dna spazzatura, bensì elementi essenziali per il corretto funzionamento dei geni (http://www.nature.com/ng/journal/v41/n5/abs/ng.368.html).
Abbiamo inoltre scoperto una nuova classe di piccoli Rna, chiamati tiny-Rna, lunghi circa 18 nucleotidi. Questi, agendo a livello dei promotori che sono gli interruttori della trascrizione, probabilmente regolano l'espressione genica. Ancora non si conosce il meccanismo con cui agiscono, ma stiamo lavorando per scoprirlo (http://www.nature.com/ng/journal/v41/n5/abs/ng.312.html).
Le analisi bioinformatiche che abbiamo svolto hanno infine permesso di ottenere un quadro complessivo della rete di interazioni tra fattori di trascrizione e promotori dei geni (http://www.nature.com/ng/journal/v41/n5/abs/ng.375.html).

Quali sono le implicazioni di queste ricerche?

Una delle possibili applicazioni riguarda la medicina rigenerativa e la ricerca sulle cellule staminali, come ad esempio le staminali pluripotenti indotte (Ips).
Per guidare una cellula nel suo percorso di differenziamento è infatti necessario conoscere i fattori di trascrizione coinvolti e, grazie ai risultati che abbiamo ottenuto, potremo contribuire alle ricerche in questo campo.
Sarà possibile identificare nuovi bersagli molecolari per lo sviluppo di farmaci, e, comprendere i meccanismi epigenetici che possono influenzare l'insorgenza delle malattie e le risposte alle terapie, analizzando patologie umane come il cancro e le malattie neurodegenerative.

Alla luce delle nuove scoperte, qual è la corretta definizione di gene?

La vera risposta è che non lo sa nessuno. Per anni un gene è stato definito come la parte del genoma che codifica per un Rna messaggero, che a sua volta codifica per una proteina. La nuova versione ampliata è che un gene, probabilmente, è una regione del genoma che produce un Rna che può essere codificante per una proteina, o non codificante e avere qualche altra funzione regolativa.
Se chiedessimo a dieci ricercatori di scrivere un articolo per definire cos'è un gene avremmo sicuramente dieci definizioni differenti.

Quali sono le domande a cui la genomica deve ancora rispondere?

Un argomento del quale sappiamo poco, ma che potrebbe avere implicazioni molto importanti, è lo studio delle interazioni tridimensionali che avvengono nella cellula. Con il sequenziamento del genoma abbiamo ottenuto una mappa piatta del Dna, mentre in realtà nella cellula questo si organizza in una struttura tridimensionale, permettendo interazioni anche tra zone lontane. La regolazione dell'espressione genica è, quindi, il risultato della sequenza lineare del Dna e delle conformazioni tridimensionali che s'instaurano.

Che consiglio darebbe ai giovani ricercatori italiani?

A loro consiglierei di andare almeno per un periodo all'estero, per provare come funziona la ricerca fuori dell'Italia, dove ti si presentano grosse sfide. La necessità di dover assolutamente produrre risultati dà grosse spinte, permettendo di crescere e raggiungere traguardi importanti.

Tiny RNAs associated with transcription start sites in animals. Nat Genet. 2009 May;41(5):572-8. Epub 2009 Apr 19. PMID: 19377478
The regulated retrotransposon transcriptome of mammalian cells. Nat Genet. 2009 May;41(5):563-71. Epub 2009 Apr 19. PMID: 19377475
The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009 May;41(5):553-62. Epub 2009 Apr 19. PMID: 19377474

altri articoli

Sulle Pontine sconfitti i ratti, tornano le berte

Grazie al progetto Life PonDerat, sull'isola di Ventotene tornano a involarsi i pulcini di berta maggiore, a lungo minacciati dalla presenza del il ratto nero, una delle specie più invasive al mondo, che ne preda uova e nidiacei. Un successo per la conservazione e un primato positivo tutto italiano; ora la sfida è impedire ai ratti di tornare sull'isola.
Nell'immagine: un pulcino di berta sull'isola di Palmarola. Crediti: Camilla Gotti, Life PonDerat

Una piccola buona notizia per la conservazione arriva dall’Italia, precisamente dalle isole Pontine. A Ventotene, grazie agli interventi realizzati nel progetto Life PonDerat, i pulcini di berta possono nuovamente spiccare il loro primo volo dalle coste di questa isola. Il progetto ha infatti eradicato il ratto nero, che comprometteva la sopravvivenza dei nidiacei.