A caccia delle onde di gravità

Read time: 3 mins

Per secoli, anzi millenni, le onde elettromagnetiche sono state la sola fonte d’informazione che l’uomo ha avuto a disposizione per studiare l’Universo. La nostra atmosfera è trasparente alla “luce”, quella piccola porzione dello spettro elettromagnetico con lunghezze d’onda comprese tra circa 400 e 700 nanometri (cui è sensibile il nostro occhio) e sino alla scoperta della prima radiosorgente celeste (Jansky, 1932) questo era tutto quanto avevamo.
E’ notevole come da così poco – una banda larga nemmeno un fattore due – abbiamo imparato così tanto, pur aiutati da telescopi sempre più grandi e strumentazione sempre più complessa.
Poi abbiamo sfruttato anche la trasparenza dell’atmosfera alle onde radio e successivamente siamo andati a raccogliere altre onde elettromagnetiche: raggi X, gamma e infrarossi, al di sopra dell’atmosfera che li assorbe impedendoci di studiarne la provenienza cosmica con rivelatori a terra. Ogni nuova porzione dello spettro elettromagnetico che diventava disponibile per l’astrofisica rivelava qualcosa di nuovo.
Ogni volta che abbiamo avuto la possibilità di guardare in maniera diversa abbiamo trovato ben di più di quanto cercavamo e soprattutto abbiamo scoperto fenomeni imprevisti e inattesi. Oggi tutto lo spettro elettromagnetico è utilizzato per studiare l’Universo.

Circa un secolo fa (Hess, 1912) sono stati scoperti i raggi cosmici, una nuova e diversa finestra sull’Universo che ci offriva l’opportunità di studiarne le proprietà attraverso il censimento delle particelle cariche di alta energia, elettroni, protoni, ioni e, più recentemente, neutrini, che arrivavano fin sulla Terra. La stiamo ovviamente sfruttando al meglio delle nostre capacità.
Un’ulteriore finestra, ancora da aprire, è rappresentata dalle onde gravitazionali che sono con noi, concettualmente, dall’inizio del secolo scorso (Relatività Generale, Einstein, 1916) Quante cose sono successe all’inizio del secolo scorso! Il loro potenziale è enorme. Se solo riuscissimo a rivelarle! E non è che non ci proviamo; vi sono diversi laboratori, negli Stati Uniti, in Giappone, in Europa e anche in Italia, dove si trovano rivelatori che – tuttavia – non hanno ancora rivelato. La speranza è di riuscire a rendere la strumentazione sempre più sensibile e trovare quanto si è convinti debba esistere. Vi sono anche ambiziosi progetti per costruire rivelatori da mettere nello spazio per la ricerca delle onde gravitazionali (ESA, New Gravitational wave Observatory). Previste dalla teoria della relatività, le onde gravitazionali si sono per ora manifestate solamente in maniera indiretta, attraverso il cambiamento nel periodo orbitale della pulsar binaria PSR B1913+16, perfettamente spiegato come perdita di energia per emissione, appunto, di onde gravitazionali, esattamente nella quantità prevista dalla teoria della relatività (premio Nobel per la Fisica 1993 a Hulse e Taylor).

Ora arriva dall’Antartide un nuovo risultato, quello di Kovac e collaboratori, atteso ma comunque da confermare, che rivela un effetto che le onde gravitazionali prodotte dall’episodio inflativo che ha caratterizzato l’espansione dell’Universo, una frazione inimmaginabile di secondo dopo il Big Bang, hanno lasciato, come un’impronta, sulla radiazione cosmica di fondo. Un risultato che in realtà sono due: un’altra conferma (ancora indiretta però) dell’esistenza delle onde gravitazionali e una possibile evidenza dell’episodio inflativo introdotto da Guth e Linde all’inizio degli anni ’80 del secolo scorso per risolvere alcuni problemi della teoria del Big Bang.
Questo risultato è così importante perchè darà ulteriore impulso alla ricerca diretta delle onde gravitazionali, allo studio della radiazione cosmica di fondo, agli studi dei modelli inflattivi. E anche al tentativo di capire come riconciliare tra loro relatività generale e fisica quantistica, visto che entrambe continuano a mietere successi.

Articoli correlati

altri articoli

Cosa chiedono gli studenti di medicina ai candidati

Il Segretariato italiano studenti di medicina fa parte dell’International Federation of Medical Students’ Association, che rappresenta 312.324 studenti di medicina da tutta Europa e di fatto rappresenta il futuro dei professionisti della sanità. Tutti i membri hanno a cuore la sanità e il loro voto dipenderà fortemente dai piani dei candidati in questo ambito. Nel testo che segue abbiamo evidenziato i punti più importanti per gli studenti di medicina europei in modo da promuovere il dibattito che li riguarda fra i candidati al nostro parlamento comunitario