Il premio Abel a John Tate e alle sue curve ellittiche

Read time: 4 mins

Il premio Abel, conferito ogni anno dall’Accademia Norvegese delle Scienze e delle Lettere per “straordinaria e profonda influenza nelle scienze matematiche” e di solito indicato dalla stampa come “Nobel della matematica”, quest’anno è andato a John T. Tate, della Austin University, per i suoi studi nel campo della teoria dei numeri. La premiazione si terrà a Oslo il 25 maggio.

Nato a Minneapolis, USA, nel 1925, Tate è stato allievo a  Princeton del grande matematico Emil Artin. E' stato professore a Harvard e poi ad Austin, in Texas, dove tuttora è Professore Emerito. Pochi anni fa fu insignito del premio Wolf, condiviso con Mikio Sato, pure di primaria importanza.
Tra i matematici straordinari del nostro tempo, Tate è particolarmente peculiare anche per l'atteggiamento professionale: in primo luogo, è sempre stato assolutamente anticipatore, spesso studiando questioni il cui impatto è emerso solo decenni più tardi. Inoltre, benché disponibilissimo al colloquio e alla diffusione scientifica, non ha mai ostentato le proprie conquiste; anzi, spesso sono stati gli amici-colleghi più vicini a doverlo spingere a pubblicare; o a voler loro stessi farsi carico di riprodurre queste idee in libri o articoli, ché altrimenti  la comunità matematica ne avrebbe perduto il prezioso accesso. In ciò Tate ricorda Fermat, il leggendario giudice-matematico del XVII secolo. In questo atteggiamento si riconosce non il disinteresse per i colleghi, ma la passione e l'eleganza intellettuale di chi gioisce delle scoperte scientifiche per la loro bellezza, a prescindere dai riconoscimenti che ne possono derivare.

E questa sobrietà e “aristocrazia” di pensiero traspaiono chiaramente dalla matematica di Tate, come ognuno che voglia accostarvisi saprà riconoscere (cogliamo qui l'occasione per segnalare  ad esempio le bellissime lezioni di carattere elementare  che formarono l'oggetto delle Philips Lectures, poi ampliate nel  volume "Rational points on Elliptic Curves" (1992)  scritto con J. Silverman ed edito da Springer-Verlag).

Sarebbe impossibile, in questa sede, descrivere anche solo in minimo dettaglio le numerose conquiste matematiche di Tate. I suoi lavori, per far riferimento a qualcosa che può essere noto anche al grande pubblico, hanno aiutato Andrew Wiles, nel 1995, a vincere una delle sfide matematiche più celebri, la dimostrazione dell’ultimo Teorema di Fermat. Utili a questo scopo si sono infatti rivelate le ricerche di Tate sull'aritmetica delle curve ellittiche (curve definite da equazioni cubiche, che storicamente si presentarono nel calcolo del perimetro di un ellisse).

Sulla produzione matematica generale di Tate, ci limiteremo necessariamente solo ad alcune allusioni. La sua ricerca  si è svolta soprattutto in Algebra, Teoria dei Numeri, Geometria, ma con un'ampia apertura culturale verso altri campi. Esordì con la tesi di Dottorato, divenuta presto celebre, in cui la teoria delle 'funzioni zeta' (coinvolte nell’ipotesi di Riemann, considerato da molti come il più importante problema aperto della matematica) veniva sviluppata nel linguaggio allora nuovo degli 'ideli' di Chevalley. Nella tesi, che realizzò l'aspirazione del maestro Artin, emergevano importanti analogie con principi di carattere geometrico. Tate sviluppò successivamente, in ambito cosmologico, la fondamentale Teoria dei Campi di Classe, costruita a  partire da Gauss con il contributo di alcuni tra i massimi matematici di tutti i tempi. Rilesse e applicò alla luce della moderna K-teoria idee che risalivano a Gauss.

Compì fondamentali ricerche sulle curve ellittiche: analizzò il principio locale-globale, introducendo il "gruppo di Tate-Shafarevic";  studiò i gruppi formali e,  con la "curva di Tate",   riprodusse sui campi p-adici la teoria  sviluppata sui numeri complessi nel secolo precedente. Questo ebbe straordinarie applicazioni, ad esempio con studi di J-P. Serre, e con la creazione da parte dello stesso Tate della "geometria analitica rigida".

Introdusse i "moduli di Tate"  per le varietà abeliane, dimostrandone proprietà fondamentali nel caso dei campi finiti, e congetturando i rispettivi analoghi per i campi di numeri. Ciò costituì indispensabile base e motivazione per ricerche che culminarono nella soluzione (da parte di G. Faltings) di alcune tra queste congetture assieme alla "congettura di Mordell".

Potremmo continuare, anche commentando  la ricaduta delle ricerche di Tate;  ci dobbiamo però fermare, e lo facciamo citando i "gruppi di Barsotti-Tate". Essi portano anche il nome dell'eminente Geometra  italiano Iacopo Barsotti,  scomparso alcuni anni orsono, accomunato a Tate dallo spirito pionieristico e che aveva indipendentemente affrontato lo studio dello stesso soggetto.

altri articoli

Le notizie di scienza della settimana #101

È entrata in vigore il 20 maggio, in occasione del World Metrology Day, la nuova definizione del chilogrammo, basata non più sul campione di platino-iridio depositato al Bureau international des poids et mesures a Parigi bensì sulla costante di Planck ℏ. La nuova definizione garantirà la stabilità di questa unità di misura, che finora doveva essere aggiornata ogni volta che il campione di platino-iridio si deteriorava e il suo peso cambiava di conseguenza. Ora il valore del chilogrammo è legato a una costante della natura misurata con estrema precisione e che non cambierà di valore. Ma come è legata la misura del chilogrammo alla costante di Planck? Per capirlo bisogna scendere nei sotterranei del National Institutes of Standards and Technology a Gaithersburg nel Maryland per vedere la bilancia di Watt, o Kibble balance. Nell'immagine: la NIST-4 Kibble balance. Credit: J.L. Lee / NIST.

Curare l'obesità con la chirurgia

La chirurgia bariatrica è lo strumento più efficiente per curare i casi gravi di obesità, eppure solo l'1% degli statunitensi che ne trarrebbero beneficio si sottopone a questo tipo di interventi. I sondaggi mostrano, infatti, che la maggioranza considera la chirurgia bariatrica pericolosa o poco efficace. Tuttavia, sono ormai numerosi gli studi scientifici che mostrano che i benefici superano abbondantemente i rischi. Non tutti gli interventi sono uguali, però.