fbpx Il grande cuore di Mercurio | Page 7 | Scienza in rete

Il grande cuore di Mercurio

Read time: 2 mins

La misurazione delle piccolissime variazioni nell'orbita della sonda MESSENGER hanno permesso di scoprire che il nucleo di Mercurio è più grande di quanto si pensasse e la sua struttura differisce da quella degli altri nuclei planetari.

A metà marzo la sonda ha completato la sua missione primaria intorno a Mercurio e i risultati suggeriti dall'analisi dei dati raccolti non si sono fatti attendere. Gran parte degli studi sono stati presentati nel corso della 43a Lunar and Planetary Science Conference svoltasi a The Woodlands in Texas, ma per la loro importanza due di essi sono stati pubblicati su Science Express.

Nel primo, David Smith e collaboratori analizzano il campo gravitazionale del pianeta ricavato dalle anomalie orbitali della sonda e presentano la possibile struttura interna di Mercurio. Oltre ad alcune anomalie imputabili ad accumuli di massa sotto la superficie, l'analisi suggerisce che il nucleo di Mercurio è molto più grande di quanto suggerito dai precedenti modelli. Il suo raggio ammonterebbe a circa l'85% del raggio del pianeta, dunque sarebbe in proporzione il più grande tra i nuclei planetari del Sistema solare. Poiché per spiegare la presenza del campo magnetico è indispensabile che almeno una parte di esso sia liquida, i ricercatori suggeriscono che il pianeta possa avere questa struttura: sotto la crosta superficiale e il mantello di silicati vi sarebbe un guscio solido di ferro e zolfo al di sotto del quale uno strato liquido ricco di ferro potrebbe avvolgere il nucleo solido più interno.

Nel secondo lavoro, presentato da due dozzine di planetologi coordinati da Maria Zuber, si analizza l'altimetria del pianeta. Le montagne di Mercurio sono mediamente inferiori rispetto a quelle presenti sulla Luna e su Marte e, secondo i ricercatori, testimoniano un'evoluzione superficiale molto travagliata, con variazioni topografiche su grande scala fin dalle fasi più antiche della storia geologica del pianeta. Un esempio su tutti è l'immenso bacino Caloris – diametro di oltre 1500 chilometri – scavato da un impatto, riempito da colate vulcaniche e successivamente modificato da altri violenti sconvolgimenti superficiali. La sua struttura originaria è stata a tal punto snaturata che attualmente il fondo del bacino risulta più elevato delle sue sponde.

Carnegie Institution

Autori: 
Sezioni: 
Astronomia

prossimo articolo

Tecnologie quantistiche: c’è ancora tempo per ragionare di equità

computer quantistico

Durante le celebrazioni per il centenario del fisico Abdus Salam al "suo" ICPT, che cade giovedì 29 gennaio, si parla di tecnologie quantistiche con alcuni ospiti. Abbiamo intervistato Tommaso Calarco, direttore del Quantum Control Group presso il centro di ricerca di Jülich in Germania, e fra i protagonisti della strategie italiana ed europea sul Quantum Flagship. È possibile seguire in diretto l'evento a questo link.

Immagine di copertina: Ragsxl/Wikimedia Commons. Licenza: CC BY-SA 4.0

Il 29 gennaio 2026 si tengono a Trieste le celebrazioni per i cento anni dalla nascita di Abdus Salam, fisico di origine pakistana e vincitore del premio Nobel per la fisica nel 1979 per l’unificazione tra interazioni elettromagnetiche e deboli. Nel 1964, Salam, insieme al fisico triestino Paolo Budinich, fondò l’International Center for Theoretical Physics, con la missione di garantire pari accesso alla scienza, indipendentemente da barriere geografiche, di genere o economiche. Proprio l’ICTP ospita l’evento.