fbpx Il vetro? Eppur si muove | Scienza in rete

Il vetro? Eppur si muove

Read time: 2 mins

Uno studio condotto da un team internazionale di ricercatori e coordinato dall’Istituto dei materiali per l’elettronica e il magnetismo del Consiglio nazionale delle ricerche (Imem-Cnr) di Parma e dal Sincrotrone europeo Esrf di Grenoble ha mostrato che a livello atomico il vetro si ‘muove’, anche a temperatura ambiente. Lo studio, pubblicato sulla rivista 'Nature Communication', è il risultato di una collaborazione che include anche le Università di Parma, Perugia, Trento, Montpellier in Francia e Friburgo in Svizzera.

“L’osservazione è particolarmente sorprendente ed è stata ottenuta su un comune vetro silicato con una tecnica spettroscopica sofisticata, che permette di osservare il movimento collettivo degli atomi su scale di lunghezza molto piccole, anche inferiori al nanometro (un miliardesimo di millimetro), fino alla distanza interatomica”, spiega Giacomo Baldi dell’Imem-Cnr. “Anche a temperature alle quali si ritiene che il vetro sia completamente immobile o ‘congelato’, poiché il moto degli atomi o rilassamento strutturale diviene tanto lento da risultare sostanzialmente infinito rispetto al tempo di osservazione, si registra invece un moto veloce che però coinvolge solo piccoli gruppi di atomi”.

L’analisi, compiuta per mezzo di una tecnica chiamata ‘spettroscopia di foto-correlazione di raggi X’, che sfrutta radiazione di sincrotrone (XPCS: X-ray photo correlation spectroscopy), mostra che “il rilassamento strutturale osservato con una risoluzione spaziale prossima alla scala atomica è inaspettatamente molto più veloce di quello su scala macroscopica, con tempi da qualche decina di secondi a qualche decina di minuti”, continua Baldi. “Per rilassamento strutturale si intende il processo che porta il sistema ad adattare la propria forma ad una sollecitazione esterna. Il sistema cerca configurazioni più stabili, cioè con energia più bassa, tipicamente quelle più compatte. Questa evoluzione nel tempo è normalmente accompagnata da un processo di ‘invecchiamento’ (physical aging), legato al fatto che si sta osservando il sistema per un tempo più corto rispetto a quello richiesto al sistema stesso per cambiare forma”.

Tali osservazioni su scale spaziali molto piccole sono sorprendenti anche perché, “oltre ad osservare un tempo di rilassamento insolitamente corto, non abbiamo rilevato nessuna evidenza di invecchiamento, nemmeno a temperature prossime a quelle a cui avviene la transizione vetrosa”, conclude il ricercatore. “Queste osservazioni sperimentali aprono la strada a nuovi esperimenti su altri vetri e richiedono lo sviluppo di nuove teorie microscopiche che ne permettano una migliore interpretazione”.

Ufficio Stampa CNR

Sezioni: 
Scienza dei Materiali

prossimo articolo

Come cominciano i terremoti

faglia di terremoto

Analizzando i primi secondi delle onde P, le prime a essere registrate dai sismometri durante un terremoto, un gruppo di ricercatori ha mostrato che è possibile stimare la magnitudo del terremoto. Il loro risultato si aggiunge al lungo dibattito sulla natura deterministica dei fenomeni di rottura all’origine dei terremoti e dunque sulla loro prevedibilità e ha implicazioni per i sistemi di allerta sismica precoce.

Nell'immagine due geologi dell'USGS misurano una rottura di faglia causata dai terremoti di Ridgecrest in California nel 2019. Foto di Ben Brooks/USGS (CC0).

È possibile prevedere la magnitudo di un terremoto osservando le onde sismiche nei loro primissimi istanti? Gli scienziati dibattono da decenni intorno a questa domanda, che è centrale per la progettazione dei sistemi di allerta sismica precoce.

Uno studio pubblicato recentemente da un gruppo di sismologi dell'Università di Napoli Federico II mostra che è possibile, analizzando circa 7000 mila onde sismiche relative a 200 terremoti avvenuti in tutto il mondo con magnitudo tra 4 e 9.