L'economia matematica: passato e presente

Read time: 5 mins

All'Angelus di inizio anno 2010 Benedetto XVI affermava che «Il futuro è nelle mani di Dio, non di maghi e economisti». In effetti l'attuale crisi ha riacceso il dibattito sul valore dell’analisi economica e della sua capacità di spiegare e prevedere. L’economia è davvero una scienza? Come può una scienza non prevedere e non accorgersi di quello che sta succedendo? La sua crescente formalizzazione ha orientato il dibattito, in particolare, sull’utilità dei modelli matematici per descrivere i sistemi economici e la loro evoluzione.

Si tratta in realtà di domande ricorrenti, alimentate periodicamente da qualche particolare difficoltà del sistema economico e dalle sempre presenti polemiche tra le diverse “scuole”. Così anche in questa occasione qualcuno ha detto che, inseguendo i formalismi matematici, gli economisti perdono di vista l’Economia. Altri hanno sostenuto che il problema sta negli specifici formalismi adottati, che quelli usati sono superati, legati ad una Matematica “vecchia”, magari mutuata in modo acritico da altre discipline. La speranza è allora che la crisi economica comporti un cambio di paradigma anche nella modellizzazione matematica.

Il recente numero monografico di Lettera Matematica Pristem, curato da Gian Italo Bischi e Angelo Guerraggio, cerca di ripercorrere le principali tappe della progressiva formalizzazione delle leggi dell'economia attraverso una rivisitazione della storia, delle idee e dei personaggi dell’Economia matematica del Novecento, con un occhio sempre puntato verso il futuro.

Proprio all'inizio del Novecento la speranza che quei metodi che si erano rivelati così fecondi nello studio della Fisica potessero essere utilmente applicati anche nello studio dell'Economia veniva espresso dal grande fisico-matematico italiano Vito Volterra, che nel discorso inaugurale per l’anno accademico 1901-1902 all’Università di Roma affermava che

«è intorno a quelle scienze nelle quali le matematiche solo da poco tempo hanno tentato d’introdursi, le scienze biologiche e sociali, che è più intensa la curiosità, giacché è forte il desiderio di assicurarsi se i metodi classici, i quali hanno dato così grandi risultati nelle scienze meccanico-fisiche, sono suscettibili di essere trasportati con pari successo nei nuovi ed inesplorati campi che si dischiudono loro dinanzi».

La narrazione proposta nel fascicolo di Lettera Matematica parte in realtà da qualche decennio prima, con le opere di fine ottocento di Jevons in Gran Bretagna, C. Menger in Austria, Walras in Francia, nelle cui opere c’è un nuovo ruolo svolto dalla Matematica, non più semplice strumento per il calcolo algebrico ma elemento costitutivo e parte integrante dell’analisi economica, e che segna la trasmigrazione dell’Economia dal novero delle scienze morali a quello delle discipline scientifiche. Una spinta ancor più decisiva in tale direzione sarà poi data da Vilfredo Pareto, che dopo aver studiato Matematica a Torino succede a Walras sulla cattedra di Losanna. Il modello seguito è la Fisica, in particolare la Meccanica, con le sue forze e i principi di massimo e di minimo che determinano i movimenti e gli equilibri. Pareto procede a partire da pochi assiomi iniziali, incontrovertibili nella loro evidenza, che sviluppa poi con un rigoroso ragionamento deduttivo.

C'è da notare che questa impostazione dell'economia ha costituito a sua volta un fattore decisivo per la definitiva affermazione in matematica dei sistemi formali, in quanto per la prima volta il metodo assiomatico-deduttivo veniva applicato al di fuori dei tradizionali contesti della geometria o della fisica.

Ma l'impresa non è facile, come amava stigmatizzare il grande economista John Maynard Keynes quando sottolineava che non bastava semplicemente adattare i metodi e i ragionamenti della fisica alla modellizzazione dell’economia perché:

«[…] l’economia è una scienza morale […] essa ha a che vedere con motivazioni, aspettative, incertezze psicologiche. Si deve essere costantemente attenti a non trattare questo materiale come se fosse costante ed omogeneo. È come se la caduta della mela al suolo dipendesse dalle aspirazioni della mela, se per lei sia conveniente o meno cadere a terra, se il suolo vuole che essa cada, e se vi sono stati errori di calcolo da parte della mela sulla sua reale distanza dal centro del pianeta» [1]

Ci vogliono allora nuovi metodi matematici in grado di descrivere l'interazione strategica fra soggetti umani, razionali e capaci di fare previsioni. Come i metodi della teoria dei giochi, il cui testo fondante di John Von Neumann e Oskar Morgenstern, Theory of Games and Economic Behavior viene pubblicato nel 1944.

Ma la narrazione non si ferma lì, come ogni prudente ricostruzione storica dovrebbe fare, e nell’ultima parte della rivista vengono presentate alcune ricerche in pieno sviluppo. Scrive uno degli autori – Carl Chiarella – che:

«ogni crisi ha finora determinato un cambiamento di paradigma, ma è ancora troppo presto per dire se l'attuale crisi finanziaria e economica avrà lo stesso profondo impatto».

Comunque, come ci fa notare lo stesso Chiarella, certamente viviamo tempi interessanti”.

E i segnali di nuovi paradigmi non mancano. Per esempio i metodi e i risultati della teoria dei sistemi dinamici non lineari, in particolare quelli legati al cosiddetto caos deterministico, hanno avuto un forte impatto sulla modellistica matematica in Economia, soprattutto in connessione con l’esigenza di prevedere e controllare l’evoluzione temporale dei sistemi economici e sociali.

La scoperta che anche modelli dinamici molto semplici sono in grado di generare caos deterministico, unitamente alla constatazione che modelli di questo genere possono essere ottenuti con ipotesi del tutto standard di equilibrio economico (con competizione perfetta, informazione completa e aspettative razionali), ha scosso le basi di molte delle idee alle quali si erano abituati gli economisti, in quanto ha spezzato il legame fra determinismo e prevedibilità, creando nel contempo una imbarazzante antinomia fra dinamiche caotiche e aspettative razionali.

Inoltre, sebbene vi sia il più largo consenso nell’affermare che i sistemi sociali sono più complessi di quelli fisici, i metodi della teoria della complessità e della fisica statistica, unitamente alle idee con cui l’evoluzionismo moderno guarda ai sistemi, stanno diventando sempre più importanti in ambito socioeconomico, così come l’approccio dei cosiddetti reticoli complessi (complex networks). Mediante questi strumenti matematici si possono infatti rappresentare fenomeni emergenti, come la comparsa di nuove forme e strutture sociali, senza che i singoli costituenti del sistema ne abbiano la consapevolezza.

[1] Questi passaggi sono riportati nel vol. XIV dei Collected Writings of John Maynard Keynes, a cura di D.E. Moggridge, Macmillan e Cambridge University Press, 1973, pp. 296-300.

altri articoli

Le notizie di scienza della settimana #104

Il biologo molecolare russo Denis Rebrikov ha dichiarato che ha intenzione di impiantare nell'utero di una donna embrioni geneticamente modificati con la tecnica CRIPSR entro la fine dell'anno. L'obiettivo sarebbe quello di prevenire che la madre, colpita da una forma di HIV resistente ai farmaci antiretrovirali, trasmetta il virus ai propri figli. Per farlo, Rebrikov userebbe la tecnica CRISPR-Cas9 per disattivare il gene CCR5, in modo simile a quanto fatto dallo scienziato cinese He Jiankui che lo scorso novembre aveva annunciato di essere stato il primo a far nascere una coppia di gemelle con questo procedimento (He voleva però evitare la trasmissione del virus dell'HIV dal padre alle figlie). La legislazione russa proibisce l'editing del genoma umano in senso generale, ma la legge sulla fertilizzazione in vitro non vi fa esplicito riferimento, e dunque Rebrikov potrebbe trovarsi di fronte un vuoto normativo che conta di colmare chiedendo l'autorizzazione di una serie di agenzie governative, a partire dal Ministero della salute. Scienziati ed esperti di bioetica si dicono preoccupati. La tecnologia non è ancora matura, motivo per cui qualche mese fa un gruppo di importanti ricercatori del campo avevano chiesto di mettere a punto una moratoria sul suo utilizzo in embrioni destinati all'impianto in utero. Non è chiaro poi se i rischi superino i benefici. In primo luogo, la disattivazione del gene CCR5 protegge dalla trasmissione del virus dell'HIV nel 90% dei casi. In secondo luogo, il rischio di mutazioni off-target e on-target indesiderate è ancora molto alto. Rebrikov sostiene che la sua tecnica ne riduca drasticamente la frequenza, ma finora non ha pubblicato alcuno studio scientifico che lo dimostri. Nell'immagine: lo sviluppo di embrioni umani geneticamente modificati con la tecnica CRISPR per correggere una mutazione responsabile della cardiomiopatia ipertrofica (lo studio, condotto nel laboratorio di Shoukhrat Mitalipov presso la Oregon Science and Health University di Portland, risale al 2017 ed è stato pubblicato su Nature). Credit: Oregon Science and Health University. Licenza: OHSU photos usage

Dove finisce la plastica dei ricchi?

Ogni anno gli Stati Uniti producono 34,5 milioni di tonnellate di rifiuti di plastica. 1 milione di tonnellate vengono spedite fuori dal continente. Fino a qualche anno fa la maggior parte veniva spedita in Cina e Hong Kong, ma nel 2017 la Cina ha chiuso le porte a questo tipo di importazioni, autorizzando solo l'arrivo della plastica più pulita e dunque più facile da riciclare.