fbpx Una pulsar sconcertante | Scienza in rete

Una pulsar sconcertante

Primary tabs

Tempo di lettura: 3 mins

La prima pulsar venne scoperta nel 1967 da Jocelyn Bell a Cambridge nel corso della sua ricerca di dottorato. Lo studio era volto a raccogliere informazioni radio sui quasar (nuclei di galassie attive), ma la scoperta di un impulso estremamente regolare proveniente dalla costellazione della Vulpecula mise in agitazione sia lei che Antony Hewish, il supervisore del suo dottorato. Scherzosamente battezzato LGM (Little green men - Piccoli omini verdi), quel segnale così regolare - un impulso ogni 1,33373 secondi - si rivelò una scoperta astronomica epocale, tanto che nel 1974 fruttò a Hewish il Premio Nobel. Qualche anno più tardi il nostro Franco Pacini, scomparso un anno fa proprio di questi giorni, inquadrò alla perfezione il fenomeno fisico all'origine di quel ticchettio cosmico. Una pulsar è una stella superdensa - una massa un po' più grande di quella del Sole impacchettata in un oggetto di una ventina di chilometri di diametro - avvolta da un intenso campo magnetico i cui poli emettono fasci di intensa radiazione. Dato che la stella è una autentica trottola e gira all'impazzata intorno al proprio asse, può capitare che queste emissioni investano periodicamente la Terra e vengano rilevate con il caratteristico segnale “pulsante” delle pulsar. Veri e propri fari cosmici, insomma.

Di pulsar ce n'è per tutti i gusti: accanto a quelle più tranquille e regolari ci sono quelle con impulsi talmente ravvicinati (pochi millesimi di secondo) da lasciare a bocca aperta. Qualcuna emette la sua radiazione lungo tutto lo spettro elettromagnetico, dalle onde radio alla radiazione X, e da tempo si conoscono anche pulsar che, per così dire, “si accendono e si spengono”. Proprio a quest'ultima categoria appartiene la pulsar PSR B0943+10 i cui impulsi, ogni qualche ora, cambiano di forma e intensità per poi ritornare, qualche ora più tardi, alle condizioni iniziali. Il bello è che questo imprevedibile cambiamento avviene in circa un secondo. Dato che PSR B0943+10 è anche una debole sorgente di radiazione X, il team di ricerca di Wim Hermsen (SRON) aveva deciso di andare a fondo di questa emissione e sorvegliare la pulsar sia nel dominio radio che in quello X. Per ottenere il massimo, Hermsen ha ottenuto di poter impiegare XMM Newton (il telescopio spaziale europeo per la radiazione X), le 30 antenne paraboliche da 45 metri del GMRT (Giant Metrewave Radio Telescope - il potente sistema radio realizzato dalle parti di Pune, in India) e anche il radiotelescopio olandese LOFAR (Low Frequency Array), fresco fresco di inaugurazione.

Con loro grande sorpresa, i ricercatori hanno scoperto uno legame davvero molto stretto tra gli impulsi X e quelli radio: quando la sorgente era al suo massimo per gli impulsi radio, quelli X erano ai livelli minimi e viceversa. L'analisi delle accurate osservazioni di XMM Newton, inoltre, ha messo in luce che durante la fase di massima intensità X la sorgente mostra la caratteristica pulsazione. Un comportamento assolutamente inaspettato, non contemplato da nessuno dei modelli attualmente in voga che provano a spiegare la complicata fisica delle pulsar. Secondo tali modelli, infatti, l'emissione X sarebbe una diretta conseguenza di quella radio, mentre l'analisi dei dati raccolti dal team di Hermsen sembrerebbe proprio indicare l'esatto contrario. Un bel nodo da sciogliere, dunque. L'unico dato certo, come i ricercatori sottolineano nello studio pubblicato su Science, è che il fenomeno fisico in atto debba essere tremendamente rapido e coinvolga l'intera magnetosfera. Ogni poche ore, insomma, scatta qualcosa che, in un istante, sconquassa la pulsar camaleonte rivoltandola come un calzino.

Per approfondimenti: 
University of Vermont 
ESA  


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Gender equality nella ricerca: c'è ancora il soffitto di cristallo

bilancia in disequilibrio con figure stilizzate di uomo e donna

In occasione della Giornata ONU delle donne e delle ragazze nella scienza, diamo un'occhiata ai dati europei sulla gender equality: ci sono i segnali di progresso nella partecipazione femminile alla ricerca e all’innovazione, ma anche persistenti squilibri strutturali. Per esempio, nonostante l’aumento di donne tra esperti, valutatori e coordinatori di progetto, l’accesso alle posizioni apicali resta limitato, la precarietà contrattuale più diffusa e il carico di cura sproporzionato. 

L’11 febbraio, Giornata ONU dedicata alle ragazze e alle donne nella scienza, offre l’occasione per interrogarsi non solo sulla loro presenza nel settore della ricerca e dell’innovazione (R&I), ma soprattutto sulla qualità di tale presenza: chi avanza di carriera, chi resta ai margini, chi abbandona e perché. Negli ultimi anni l’Unione europea ha fatto dell’uguaglianza di genere una priorità esplicita, integrando la gender dimension nei programmi quadro per la ricerca e promuovendo cambiamenti istituzionali attraverso strumenti come il Gender Equality Plan (Gep).