fbpx Bayesiano a chi? | Scienza in rete

Bayesiano a chi?

Read time: 5 mins

È il 2 di ottobre; le nubi coprono il cielo di Milano ma le temperatura sono nelle medie stagionali: tra i 10 e i 20 gradi. Nulla giustificherebbe l’acquisto di un girocollo di lana e di un piumino imbottito. Eppure… Non  c’è vetrina di negozio di abbigliamento che non esponga i capi più pesanti e caldi di cui disponga. Folli? No bayesiani! 

I negozianti non stanno facendo altro che applicare una delle teorie più discusse e affascinanti della statistica: l’inferenza bayesiana. Nessun timore, dietro a due parole così sinistre si nasconde solo il seguente ragionamento: l’autunno e l’inverno sono succeduti all’estate per miliardi di anni. Ora l’estate sta finendo. Con un’elevata probabilità arriverà l’autunno. Banale? Tutt’altro! A formalizzare per la prima volta il concetto fu il reverendo britannico Thomas Bayes ( 1702 – 1761) ma il teorema venne pubblicato postumo nel 1763; indipendentemente da lui anche Pierre Simone de Laplace arrivò alla sua enunciazione nel 1774. Da un certo punto di vista il teorema di Bayes non è nient’altro che l’esplicitazione del metodo scientifico: a partire da una serie di dati già in nostro possesso possiamo formulare un’ipotesi; collezionando sempre nuovi dati possiamo continuamente aumentare (o rivedere) il grado di bontà delle nostre ipotesi. Sostanzialmente il teorema di Bayes ci dice con quanta probabilità possiamo stimare che una determinata causa abbia generato un certo evento: una volta ottenuto un preciso risultato possiamo così valutare quanto questo si accordi con la teoria da cui siamo partiti; è una misura della bontà dell’ipotesi e della soggettività della ricerca che lo scienziato conduce.
Per capire meglio, è opportuno citare un esempio fatto Giulio d’Agostini, professore associato a La Sapienza di Roma: qual è la probabilità che un cittadino scelto a caso all’interno della popolazione italiana sia affetto dal virus dell’HIV posto che sia risultato positivo al test? Considerando che il test dell’HIV può avere lo 0.2% di falsi positivi (ossia nello 0,2% dei casi l’individuo non ha l’HIV anche se il test risulta positivo) ma non ha falsi negativi, calcoli alla mano. Il teorema di Bayes ci dice che la probabilità di avere contratto l’HIV è del 45%: anche a test positivo è quindi più probabile non avere l’HIV. Calcoli simili si possono fare per i test diagnostici di tumori o sindrome di down. Soprattutto in ambito medico la statistica Bayesiana risulta essere particolarmente utile e, al contempo , misconosciuta; ecco perché la Food and Drug Administration, l'ente governativo statunitense che si occupa della regolamentazione dei prodotti alimentari e farmaceutici adotta per i propri trial la statistica bayesiana e riporta sulle pagine del proprio sito un’intera sessione dedicata all’argomento. Ciò non significa che la statistica “frequentista” sia errata: un buon frequentista e un bayesiano arriveranno alla determinazione delle stessa probabilità; il teorema di Bayes offre uno strumento per non incappare in errori spesso nascosti e insidiosi nella distribuzione della probabilità: è un bastone a cui appoggiarsi per evitare gli ostacoli del senso comune.

L'importante è non trovare la capra

Già perché il senso comune spesso ci induce all’errore. Un caso tipico è quello del Monthy Hall, un gioco a premi americano (Let’s make a deal) il cui conduttore Maurice Halprin, era noto con lo pseudonimo di Monty Hall. Nel gioco il concorrente è posto davanti a tre porte chiuse ed è invitato a indovinare dietro quale delle tre porte si celi l’automobile in palio; dietro alle altre due porte si trovano due capre. Supponiamo ora che il partecipante scelga la porta 1; prima di aprirla e scoprire cosa c’è dietro di essa il conduttore che sa dove sta l’automobile (questo è un punto fondamentale) apre la porta 3 dimostrando che dietro di essa si trova una capra. A questo punto il conduttore chiede al partecipante se vuole cambiare la porta. Noi cosa faremmo? Il senso comune ci direbbe che la scelta è indifferente perché esiste il 50 % di possibilità che l’auto sia dietro la porta 1 o dietro la porta 2; un bayesiano al contrario cambierebbe subito la porta 1 con la porta 2 perché saprebbe in questo modo di raddoppiare la probabilità di vincita. Ecco perché: quando il concorrente è davanti alle tre porte ha il 33,3% di possibilità di trovare l’auto dietro ogni porta. Sceglie la porta 1 con una possibilità di vittoria del 33,3%; questo significa che nel 66,6% dei casi l’auto sarà dietro la porta 2 o 3; aprendo la porta 3 e scoprendo dietro di essa una capra, il 66,6% di trovare l’auto ricadrà interamente sulla porta 2.

Il punto fondamentale che porta a una distribuzione diversa da quella suggerita dal senso comune sta nel fatto che il conduttore non è libero di aprire una porta a caso ma deve necessariamente aprire una porta dietro la quale vi sia una capra; è la conoscenza del dato che cambia la distribuzione statistica; provare per credere!
Verrebbe da chiedersi perché un teorema così utile sia stato quasi dimenticato per secoli; la motivazione è che il calcolo necessaria per svilupparlo correttamente nei casi complessi è tutt’affatto banale. Solo con i moderni calcolatori possiamo essere in grado di applicare l’inferenza bayesiana a una serie di variabili (o nodi) ricostruendo quelle che vengono chiamate reti bayesiane in grado di monitorare sistemi complessi; le reti bayesiane e i software implementati per la loro costituzione sono utili oggi per l’individuazione della malattia di cui è affetto un individuo (posto che più malattie possano dare gli stessi sintomi) facendo incrociare sintomi e stili di vita; vengono usate nei filtri anti-spam oppure nei musei per realizzare  narrazioni audiovisive in funzione del percorso intrapreso e del tempo speso da un visitatore nelle diverse sale di museo. Oggi il “controverso teorema” sta vivendo un momento di grande successo, comparendo sia in  articoli di riviste scientifiche (circa un quarto degli articoli scientifici usa la statistica bayesiana) sia in review e commenti di varia dal campo della giurisprudenza a quello dell’economia, passando per le telecomunicazioni.
Ma non è sempre stato così: il piccolo gruppo di statistici bayesiani attivi in America durante la presidenza McCarthy venivano considerati “un-American” e definiti dai loro colleghi dell’Harvard Business Scholl “socialist and so-called scientist”.
E se ora scriverete “bayesian statistic” su Google per averne un quadro più completo vi renderete conto di quante applicazioni possa avere un solo teorema, senza dimenticare che Google stesso farà la sua ricerca usando, ovviamente, algoritmi bayesiani. 


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Perché le reti neurali hanno vinto i Nobel per la fisica e la chimica?

Quest'anno l'Intelligenza Artificiale ha fatto la parte del leone nei Nobel per la fisica e la chimica. Meglio sarebbe dire machine learning e reti neurali, grazie al cui sviluppo si devono sistemi che vanno dal riconoscimento di immagini alla IA generativa come Chat-GPT. In questo articolo Chiara Sabelli racconta la storia della ricerca che ha portato il fisico e biologo John J. Hopfield e l'informatico e neuroscienzato Geoffrey Hinton a porre le basi dell'attuale machine learning.

Immagine modificata a partire dall'articolo "Biohybrid and Bioinspired Magnetic Microswimmers" https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.201704374

Il premio Nobel per la fisica 2024 è stato assegnato a John J. Hopfield, fisico e biologo statunitense dell’università di Princeton, e a Geoffrey Hinton, informatico e neuroscienziato britannico dell’Università di Toronto per aver sfruttato strumenti della fisica statistica nello sviluppo dei metodi alla base delle potenti tecnologie di machine learning di oggi.