fbpx Un 'treno ad alta velocità' per il trasporto di sostanze | Page 18 | Scienza in rete

Un 'treno ad alta velocità' per il trasporto di sostanze

Primary tabs

Read time: 2 mins

Scoperto una nuova via di produzione dei glicolipidi, importanti mattoni delle membrane cellulari coinvolti nello sviluppo di numerose malattie genetiche: il lavoro, condotto da Antonella De Matteis dell’Istituto Telethon di genetica e medicina (Tigem) di Napoli, ha meritato le pagine di Nature* e apre interessanti prospettive per tutte quelle rare patologie in cui queste sostanze non vengono adeguatamente smaltite e si accumulano, con pesanti ripercussioni su cellule e tessuti.

I glicolipidi - grassi a cui viene aggiunto un residuo di zucchero - sono componenti fondamentali delle membrane cellulari, perché regolano la comunicazione tra una cellula e l’altra: il loro centro di produzione è l’apparato del Golgi struttura cellulare che prende il nome dal suo scopritore, il  medico e premio Nobel italiano Camillo Golgi, che l’ha descritta per la prima volta nel lontano 1898. Questo apparato è costituito da una serie di cisterne appiattite impilate le une sulle altre e all’interno di ogni cellula ha il compito di assemblare le proteine e i lipidi che costituiscono le membrane cellulari e di “inviarli” verso la loro destinazione finale.

Ufficio stampa Telethon

Come spiega De Matteis, «l’apparato del Golgi funziona come una sorta di catena di montaggio il cui nastro attraversa le varie cisterne trasportando i diversi componenti da assemblare per ottenere il prodotto finito: a livello di ogni cisterna avviene una specifica modificazione propedeutica a quella successiva. Nel lavoro pubblicato su Nature abbiamo dimostrato come, a differenza di quanto si sapeva prima, esiste più di un nastro trasportatore che corre lungo l’apparato del Golgi. In particolare, uno di questi è una vera e propria corsia preferenziale, perché collega direttamente la stazione di partenza a quella di arrivo, senza fermate intermedie: una sorta di treno ad alta velocità riservato a particolari glicolipidi e controllato da una proteina chiamata FAPP2».

Oltre a dare un importante contributo alle conoscenze di base sulla struttura e il funzionamento della cellule, la scoperta mette in luce una nuova via di intervento per quelle condizioni in cui i glicolipidi tendono ad accumularsi, con effetti patologici sui tessuti, perché non adeguatamente smaltiti: «aver scoperto questo nuovo percorso che fanno queste sostanze ci suggerisce un nuovo possibile bersaglio terapeutico su cui agire: invece che agire sul difetto genetico possiamo infatti pensare di rallentare la produzione di glicolipidi e limitarne così l’accumulo dannoso».

Il lavoro dei ricercatori del Tigem si è svolto in collaborazione con l’Istituto di biochimica delle proteine del Consiglio nazionale delle ricerche (Cnr) e il Ceinge di Napoli e con importanti centri di ricerca internazionali come l’Università di Osaka (Giappone), le Università di Oxford e Cambridge (Regno Unito) e la Akademi University di Turku (Finlandia).

Autori: 
Sezioni: 
Telethon

prossimo articolo

Riforestazione: un’arma a doppio taglio da conoscere e gestire

campagna con foresta retrostante

A causa dell’abbandono massiccio delle campagne ogni anno i nuovi boschi guadagnano terreno e, in quasi tutti i casi, scegliamo di non gestirli. Questa ricolonizzazione non gestita rischia di ridurre la qualità ecologica degli ecosistemi agro-forestali, rendendoli meno resistenti al fuoco e più poveri di biodiversità.

Nell'immagine di copertina: Foreste e coltivazioni in coesione tra sviluppo naturale e gestione a Gaiole di Chianti (Siena). Crediti: Enrico Ugo Pasolini

«Ai miei tempi qui era tutta campagna, ci hanno ripetuto i nostri nonni davanti alle periferie delle loro città. È probabile che ai nostri figli noi diremo lo stesso, non davanti ai palazzi di una metropoli ma di fronte al verde di un bosco che fino a pochi anni fa non esisteva: «Ai miei tempi, questa era tutta campagna».