fbpx Anti idrogeno al Cern | Page 2 | Scienza in rete

Anti idrogeno al Cern

Read time: 2 mins

Un gruppo di fisici della Collaborazione ALPHA, uno degli esperimenti di LHC al CERN di Ginevra, è riuscito a confezionare 38 atomi di anti-idrogeno (l’atomo più piccolo di antimateria) e a intrappolarli in un “luogo sicuro”. Ovvero in ambiente ideale dove possono essere “conservati” a lungo (addirittura per un decimo di secondo) e, dunque, a lungo studiati.

Non è la prima volta che si crea in laboratorio antimateria. E non è neppure la prima volta che si creano atomi di anti-idrogeno, composti da un antiprotone (una particella che ha tutte le caratteristiche del protone, salvo la carica elettrica che nel caso dell’antimateria è negativa) e da un positrone, ovvero da un antielettrone in tutto simile a un normale elettrone tranne che nella carica, che invece di essere negativa è positiva. Il primo atomo di anti-idrogeno è stato ottenuto proprio al CERN di Ginevra nel 1995.

I fisici sanno da tempo come ottenere piccole quantità di antimateria. Ma non sempre riescono a conservarla a lungo in quantità importanti. Per il semplice motivo che quanto una particella di antimateria ne incontra una di materia avviene una istantanea annichilazione: le due si distruggono a vicenda. Gli atomi di antimateria decadono così rapidamente. Nel 2002, sempre a Ginevra, gli esperimenti ATHENA e ATRAP hanno dimostrato che è possibile in linea di principio ottenere anti-idrogeno in grandi e relativamente stabili quantità. Ora ALPHA è riuscito a ottenere queste (relativamente) grandi e quantità. La performance è descritta in un articolo pubblicato ieri sera su Nature on line.

 

 

I fisici al CERN sono riusciti, dunque, a produrre una buona quantità di antiprotoni e di positroni (antielettroni) – migliaia di particelle – e a farli avvicinare per creare molti atomi di anti-idrogeno. Fra questi solo 38 sono stati confinati, grazie a un forte campo magnetico, all’interno della macchina in tempi abbastanza lunghi – un decimo di secondo – per poterli studiare con una certa calma.

LHC, dunque, inizia a intensificare la produzione di risultati scientifici importanti. Presso quella che è la macchina più grande mai costruita dall’uomo lavorano fisici di tutto il mondo. Tra questi molti italiani dell’Istituto Nazionale di Fisica Nucleare in posizioni di notevole responsabilità.

Tratto da L'Unità del 17/11/2010

Autori: 
Sezioni: 
Indice: 
Fisica

prossimo articolo

Come cominciano i terremoti

faglia di terremoto

Analizzando i primi secondi delle onde P, le prime a essere registrate dai sismometri durante un terremoto, un gruppo di ricercatori ha mostrato che è possibile stimare la magnitudo del terremoto. Il loro risultato si aggiunge al lungo dibattito sulla natura deterministica dei fenomeni di rottura all’origine dei terremoti e dunque sulla loro prevedibilità e ha implicazioni per i sistemi di allerta sismica precoce.

Nell'immagine due geologi dell'USGS misurano una rottura di faglia causata dai terremoti di Ridgecrest in California nel 2019. Foto di Ben Brooks/USGS (CC0).

È possibile prevedere la magnitudo di un terremoto osservando le onde sismiche nei loro primissimi istanti? Gli scienziati dibattono da decenni intorno a questa domanda, che è centrale per la progettazione dei sistemi di allerta sismica precoce.

Uno studio pubblicato recentemente da un gruppo di sismologi dell'Università di Napoli Federico II mostra che è possibile, analizzando circa 7000 mila onde sismiche relative a 200 terremoti avvenuti in tutto il mondo con magnitudo tra 4 e 9.