fbpx Ecco la quarta trasformazione del neutrino | Scienza in rete

Ecco la quarta trasformazione del neutrino

Read time: 3 mins

L’esperimento OPERA ai Laboratori Nazionali del Gran Sasso dell’INFN ha fotografato il quarto neutrino “trasformista”. Partito dal CERN di Ginevra di tipo muonico, il neutrino è infatti arrivato, dopo aver percorso 730 km attraverso la crosta terrestre, ai Laboratori del Gran Sasso come neutrino tau. L’importante risultato è stato oggi annunciato nel corso di un seminario ai Laboratori del Gran Sasso. “L’arrivo del quarto neutrino tau – spiega con grande soddisfazione Giovanni De Lellis dell’INFN e dell’Università Federico II di Napoli e capo del team internazionale di OPERA – è una conferma molto importante degli eventi precedentemente rivelati. Questa transizione è ora vista per la prima volta con una significatività statistica superiore a 4 sigma: fuori dal gergo scientifico, questo equivale a dire che per la prima volta possiamo parlare di osservazione del rarissimo fenomeno delle oscillazioni dei neutrini da tipo muonico a tipo tau, scopo per il quale OPERA era stato progettato.” “L’osservazione di altri neutrini tau nei dati che ancora rimangono da analizzare potrebbe condurci a un livello di significatività statistica ancora più elevato. Questo importante risultato presentato oggi è stato possibile grazie alla dedizione di tutti i ricercatori coinvolti nel progetto”, conclude De Lellis.

L’esperimento internazionale OPERA (che coinvolge 140 fisici provenienti da 28 istituti di ricerca in 11 Paesi) è stato realizzato allo scopo specifico di osservare questo evento eccezionalmente raro. L’oscillazione dei neutrini è rimasta per diversi decenni un fenomeno non compreso. Più di 15 anni fa, fu dimostrato che i neutrini muonici prodotti dalle interazioni dei raggi cosmici arrivavano sulla Terra ​​in quantità minore di quanto previsto. L’osservazione di oggi ne spiega il perché: i neutrini "mancanti" sono, infatti, quei neutrini muonici che lungo il percorso hanno oscillato in neutrini di tipo tau.

 

L’esperimento OPERA con il CNGS (Cern Neutrinos to Gran Sasso)

Un fascio di neutrini prodotti al CERN di Ginevra viaggia verso il laboratorio sotterraneo del Gran Sasso. Grazie al fatto che interagiscono pochissimo con la materia, dopo aver viaggiato attraverso la terra per circa 730 km, i neutrini arrivano imperturbati al rivelatore OPERA, un gigante di più di 4.000 tonnellate, con un volume di circa 2.000 m3 e nove milioni di pellicole fotografiche: qui vengono fotografate le particelle che riescono a essere catturate. In natura ci sono tre tipi di neutrini, chiamatisapori: elettrone, muone e tau. OPERA cerca i neutrini tau sapendo che tutti quelli che lasciano il CERN sono neutrini muonici, perché vengono appositamente prodotti di questo tipo. La rivelazione di neutrini di un altro sapore è la prova che si è verificata l’oscillazione durante il viaggio di 730 km. Dopo l’arrivo nel 2006 dei primi neutrini ​​ai Laboratori del Gran Sasso dell’INFN, l’esperimento ha raccolto dati per cinque anni consecutivi, dal 2008 al 2012. Il primo neutrino tau è stato osservato nel 2010, il secondo e il terzo nel 2012 e nel 2013, rispettivamente.

Gli scienziati completeranno l’analisi dei dati nel prossimo anno alla ricerca di altri neutrini tau per raggiungere la massima significatività nel fenomeno di apparizione di neutrini tau dall’oscillazione di neutrini muonici.  

Ufficio Comunicazione INFN

Autori: 
Sezioni: 
Dossier: 
Indice: 
Fisica

prossimo articolo

Come cominciano i terremoti

faglia di terremoto

Analizzando i primi secondi delle onde P, le prime a essere registrate dai sismometri durante un terremoto, un gruppo di ricercatori ha mostrato che è possibile stimare la magnitudo del terremoto. Il loro risultato si aggiunge al lungo dibattito sulla natura deterministica dei fenomeni di rottura all’origine dei terremoti e dunque sulla loro prevedibilità e ha implicazioni per i sistemi di allerta sismica precoce.

Nell'immagine due geologi dell'USGS misurano una rottura di faglia causata dai terremoti di Ridgecrest in California nel 2019. Foto di Ben Brooks/USGS (CC0).

È possibile prevedere la magnitudo di un terremoto osservando le onde sismiche nei loro primissimi istanti? Gli scienziati dibattono da decenni intorno a questa domanda, che è centrale per la progettazione dei sistemi di allerta sismica precoce.

Uno studio pubblicato recentemente da un gruppo di sismologi dell'Università di Napoli Federico II mostra che è possibile, analizzando circa 7000 mila onde sismiche relative a 200 terremoti avvenuti in tutto il mondo con magnitudo tra 4 e 9.