L’esperimento Asacusa al
Cern di Ginevra è riuscito per la prima volta a produrre un fascio di atomi di
anti-idrogeno. Il risultato è presentato in un articolo pubblicato oggi su Nature
Communications, nel quale la collaborazione scientifica spiega di aver rivelato
in modo inequivocabile 80 atomi di anti-idrogeno 2,7 metri a valle della
sorgente.
“Il risultato appena
pubblicato – spiega Luca Venturelli dell’INFN di Brescia e dell’Università di
Brescia che coordina il gruppo italiano della collaborazione – rende molto più
concreta e vicina la possibilità di realizzare misure di precisione con gli
atomi di anti-idrogeno”. “E sondare le caratteristiche dell’antimateria –
prosegue Venturelli – può aiutare a risolvere uno dei grandi misteri della
fisica moderna: la prevalenza di materia rispetto all’antimateria nell’universo
visibile”.
Una tecnica innovativa. Oggi
è possibile produrre quantità significative di anti-idrogeno mescolando
antielettroni (detti anche positroni) e antiprotoni a bassa energia prodotti
dal deceleratore di antiprotoni del Cern. La difficoltà però sta nel mantenere
gli antiatomi prodotti lontano dalla materia ordinaria, per evitare che
annichilino (materia e antimateria, infatti, quando entrano in contatto si
annichilano vicendevolmente). Per fare ciò gli esperimenti hanno
sfruttato finora le proprietà magnetiche dell’anti-idrogeno utilizzando campi
magnetici fortemente non uniformi per “intrappolare” gli antiatomi abbastanza a
lungo per studiarli. Tuttavia, i campi magnetici perturbano questi sistemi di
anti-atomi compromettendo così la precisione delle misure e quindi lo studio
del loro comportamento. Per consentire una spettroscopia pulita ad alta
risoluzione, la collaborazione Asacusa ha sviluppato una tecnica innovativa:
produrre un fascio di antiparticelle in modo da studiare gli antiatomi “in
volo”, lontano dai campi magnetici. A 2,7 metri di distanza dalla sorgente,
infatti, l’influenza dei campi magnetici utilizzati inizialmente per produrre
gli antiatomi è piccola, quindi lo stato del sistema subisce perturbazioni
minime.
Perché studiare
l’antimateria. Al momento del Big Bang, materia e antimateria si sono prodotte
in uguali quantità. Ma noi oggi viviamo in un mondo fatto di materia e
dell’antimateria primordiale non è mai stata trovata traccia. La materia ha
quindi prevalso sull’antimateria e l’origine di questa asimmetria non è nota.
Essendo composto da un singolo protone e un singolo elettrone, l’idrogeno è il
più semplice atomo esistente e uno dei sistemi investigati con maggior
precisione e meglio compreso nella fisica moderna. Così confrontare atomi di
idrogeno e anti-idrogeno costituisce uno dei modi migliori per eseguire test di
alta precisione sulla simmetria tra materia e antimateria. Gli spettri di
idrogeno e anti-idrogeno sono previsti essere identici: ogni piccola differenza
tra loro potrebbe aiutare a risolvere il mistero dell’asimmetria e aprire una
finestra sulla “nuova fisica”.
Prodotto per la prima volta un fascio di anti-idrogeno
prossimo articolo
L’incredibile e triste storia dei nuovi studi sul vaccino contro l’epatite B

Con il pretesto della Gold Standard Science, il Dipartimento per la Salute diretto da Robert Kennedy intende finanziare con 1,6 milioni di dollari uno studio in Guinea Bissau sulla vaccinazione alla nascita contro il virus dell’epatite B. Procedura in uso negli Stati Uniti dal 1991. L’intento non è quello di aumentare la copertura vaccinale nel Paese africano, ma mettere a confronto un vaccino già noto con l’assenza di vaccino. Con sommo sprezzo dell’etica della ricerca
Partiamo da qui per raccontare una storia lunga, che ancora non si è conclusa.
È il 1991, la commissione per i vaccini dei Centers for Diseases Control (ACIP, Immunization Practices Advisory Committee) consiglia per la popolazione degli Stati Uniti la prima dose di vaccino per il virus dell'epatite B (HBV) alla nascita (che vuol dire entro 24 ore dalla nascita). Le successive due dosi dopo uno e sei mesi.