Un Nobel alla scienza simulante

Read time: 3 mins

Premiata la chimica simulante, verrebbe da dire. Martin Karplus, Michael Levitt e Arieh Warshel hanno davvero molti titoli per meritare il Nobel assegnato loro dall’Accademia delle Scienze di Svezia.
Il primo, naturalmente, è strettamente scientifico. Sono riusciti, infatti, a realizzare «modelli multiscala per sistemi chimici complessi», coniugando con inusitata efficacia la descrizione quantistica e la descrizione classica.
In pratica hanno trovato gli algoritmi giusti per descrivere in termini di chimica quantistica (e dunque in maniera molto precisa) la parte centrale di un sistema chimico complesso, e a descrivere in termini classici le interazioni tra questa parte e l’ambiente chimico circostante. Creando le premesse per la descrizione dinamica nello spazio  tridimensionale di diverse molecole o gruppi di molecole che interagiscono. Il che ha consentito, come è ben spiegato nella documentazione avanzata che accompagna la motivazione del Nobel, di studiare in maniera fine la funzione, oltre che la struttura dei sistemi chimici complessi.

Grazie anche al loro lavoro è diventato possibile approfondire il comportamento di un enzima mentre catalizza una reazione. O studiare in dettaglio “lo stato di transizione”, ovvero quel passaggio in genere rapidissimo in cui i reagenti si trasformano nei prodotti di una reazione chimica. Il secondo motivo ha una natura informatica.
I tre hanno messo a punto algoritmi fondati sul modello quantistico e classico che consente al computer di elaborare l’enorme quantità di calcoli che serve per descrivere i sistemi chimici complessi e, dunque, di simulare la loro evoluzione nel tempo e nello spazio.
L’impresa ha avuto un’enorme ricaduta in molti settori della chimica, da quella supramolecolare a quella biologica.Il terzo motivo che rende particolarmente significativo questo premio Nobel è di natura epistemologica.
Grazie a Martin Karplus, Michael Levitt e Arieh Warshel la simulazione al computer ha fatto irruzione anche nelle scienze chimiche, proponendo una novità metodologica dopo che per tre secoli e mezzo a dominare la scienza era stato il combinato disposto delle galileiane “certe dimostrazioni” (la teoria, la più matematizzata possibile) e “sensate esperienze” (le prove empiriche).

La simulazione al computer è, naturalmente, “intrisa di teoria”. E, infatti, i modelli informatici di Martin Karplus, Michael Levitt e Arieh Warshel si fondano sulle teorie chimiche consolidate, quantistiche o classiche che siano. La simulazione al computer cerca, naturalmente, di “salvare i fenomeni”, ovvero di fornire una spiegazione, la più economica possibile, dei fatti noti. La simulazione al computer ha dunque numerosi limiti ed è complementare, ma non alternativa, alla teoria e alla sperimentazione. Eppure la simulazione è capace di generare “nuova conoscenza”. E, infatti, col computer sono nate nuove discipline, capaci di affrontare problemi complessi a lungo considerati “intrattabili” della scienza strettamente galileiana. Non avremmo la moderna scienza del clima, per esempio, senza la simulazione al computer. Né avremmo una comprensione fine della sintesi di una catena di zuccheri da parte di un lisozima o del comportamento di strutture supramolecolari, senza le “simulazione al computer” di Martin Karplus, Michael Levitt e Arieh Warshel.

A ben vedere è proprio l’aver spalancato le porte della scienza simulante alla chimica il maggiore dei meriti dei tre neolaureati a Stoccolma.

altri articoli

Le notizie di scienza della settimana #101

È entrata in vigore il 20 maggio, in occasione del World Metrology Day, la nuova definizione del chilogrammo, basata non più sul campione di platino-iridio depositato al Bureau international des poids et mesures a Parigi bensì sulla costante di Planck ℏ. La nuova definizione garantirà la stabilità di questa unità di misura, che finora doveva essere aggiornata ogni volta che il campione di platino-iridio si deteriorava e il suo peso cambiava di conseguenza. Ora il valore del chilogrammo è legato a una costante della natura misurata con estrema precisione e che non cambierà di valore. Ma come è legata la misura del chilogrammo alla costante di Planck? Per capirlo bisogna scendere nei sotterranei del National Institutes of Standards and Technology a Gaithersburg nel Maryland per vedere la bilancia di Watt, o Kibble balance. Nell'immagine: la NIST-4 Kibble balance. Credit: J.L. Lee / NIST.

Curare l'obesità con la chirurgia

La chirurgia bariatrica è lo strumento più efficiente per curare i casi gravi di obesità, eppure solo l'1% degli statunitensi che ne trarrebbero beneficio si sottopone a questo tipo di interventi. I sondaggi mostrano, infatti, che la maggioranza considera la chirurgia bariatrica pericolosa o poco efficace. Tuttavia, sono ormai numerosi gli studi scientifici che mostrano che i benefici superano abbondantemente i rischi. Non tutti gli interventi sono uguali, però.