Fatti (non) fummo per comprendere l’Universo?

Read time: 4 mins

Quanto siamo “adatti” a capire il mondo che ci circonda? Per nostra natura abbiamo familiarità con dimensioni, masse, tempi e più in generale grandezze e concetti che fanno parte della nostra quotidianità o di cui abbiamo comunque avuto modo di fare esperienza diretta. Che si collocano, quindi, in un intervallo relativamente ristretto, caratteristico della nostra vita, rispetto ai valori che queste grandezze possono assumere.

Dai grammi alle tonnellate, dalle frazioni di secondo ai secoli, dal decimo di millimetro alle migliaia di chilometri, non abbiamo difficoltà a farci un’idea immediata di queste grandezze così come sappiamo valutare facilmente cosa voglia dire andare a 800 km/h o affermare che la densità dell’acqua è di 1 (in g/cm 3) mentre quella del piombo è oltre dieci volte maggiore. Quello che percepiamo con i nostri sensi lo riusciamo più facilmente a capire e proprio per questo cerchiamo di ricondurre all’esperienza diretta, a situazioni famigliari – anche attraverso analogie – quanto invece non rientra in un modello riconosciuto.

Nel tempo abbiamo di molto allargato l’intervallo di grandezze con cui abbiamo avuto modo di familiarizzare, spesso grazie all’ausilio di nuovi strumenti. I microscopi, sempre più potenti, ci hanno mostrato per esempio le immagini di microbi e virus, grandi frazioni di micron (milionesimi di metro); i razzi e lo Space Shuttle ci hanno permesso di viaggiare a velocità dell’ordine delle decine di migliaia di km/h, e di compiere viaggi di quasi un milione di km: Terra-Luna, andata e ritorno.

Tuttavia la scienza ci mette continuamente a contatto con grandezze e ci racconta di situazioni che sfuggono alla nostra intuizione. Quando guardiamo la fotografia, scattata dal telescopio Hubble, di una lontana galassia, distante 10 miliardi di anni luce, riusciamo veramente a capacitarci di questa distanza? Di cosa vuol dire viaggiare per 10 miliardi di anni alla velocità della luce? O ancora, quando leggiamo che nel periodo compreso tra 10-37 e 10-32 secondi dal Big Bang l’Universo ha aumentato le sue dimensioni di 1050 volte, capiamo cosa vuol dire? Io no! Ma anche senza doverci confrontare con casi così estremi, non riusciamo facilmente a immaginare neppure la “realtà” di un atomo e per capirlo e spiegarlo lo riconduciamo alla semplificazione di un sistema planetario con elettroni che ruotano intorno al nucleo come i pianeti intorno al Sole. Riconduciamo così alla meccanica classica (quella della nostra vita quotidiana) quella fisica quantistica che ha rappresentato uno sconvolgimento culturale enorme nella nostra comprensione del mondo e che è certamente tutt’altro che intuitiva.

Come facciamo dunque a “capire” quello che non riusciamo a comprendere? Come possiamo sviluppare teorie che contemplano dieci o più dimensioni quando non riusciamo nemmeno a immaginare la quinta (assumendo di aver digerito la quarta, quella temporale)? Come possiamo descrivere il comportamento della materia mentre viene inghiottita da un buco nero o le interazioni tra i quark all’interno di un protone, o cosa succede sulla superficie di una stella di neutroni? Certamente non possiamo fare affidamento su intuizione e concetti famigliari per raffigurarci queste grandezze e questi fenomeni. Possiamo però usare la matematica. La matematica progredisce con le nostre necessità, è uno strumento che raffiniamo continuamente per soddisfare il bisogno crescente di descrivere situazioni sempre più complesse o elaborate, di risolvere problemi. È una preziosa cassetta degli attrezzi cui aggiungiamo continuamente nuovi strumenti. Una volta c’erano solo i cosiddetti numeri naturali, poi abbiamo aggiunto quelli razionali e poi i reali, i complessi e così via. Sono seguiti vettori, e tensori, equazioni differenziali e calcolo infinitesimale, frattali e altro ancora.

Abbiamo imparato a utilizzare tutti questi strumenti e a crearne continuamente di nuovi proprio per estendere la nostra capacità di descrivere il mondo che ci circonda e che, man mano che lo studiamo, si rivela sempre più complesso.

La matematica è diventata, nel secolo scorso – quello della meccanica quantistica e della relatività generale – il miglior strumento che abbiamo a disposizione per descrivere il mondo, liberandoci da molti dei nostri limiti e permettendoci le necessarie astrazioni. Ma Galileo già lo diceva nel Saggiatore quando, riferendosi all’Universo, scriveva: “… ma non si può intendere se prima non s’impara a intender la lingua, e conoscer i caratteri, ne’ quali è scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi, e altre fi gure geometriche, senza i quali mezzi è impossibile a intenderne umanamente parola; senza questi è un aggirarsi vanamente per un oscuro laberinto”.

Pubblicato su Le Stelle 94, 2011

altri articoli

Le notizie di scienza della settimana #104

Il biologo molecolare russo Denis Rebrikov ha dichiarato che ha intenzione di impiantare nell'utero di una donna embrioni geneticamente modificati con la tecnica CRIPSR entro la fine dell'anno. L'obiettivo sarebbe quello di prevenire che la madre, colpita da una forma di HIV resistente ai farmaci antiretrovirali, trasmetta il virus ai propri figli. Per farlo, Rebrikov userebbe la tecnica CRISPR-Cas9 per disattivare il gene CCR5, in modo simile a quanto fatto dallo scienziato cinese He Jiankui che lo scorso novembre aveva annunciato di essere stato il primo a far nascere una coppia di gemelle con questo procedimento (He voleva però evitare la trasmissione del virus dell'HIV dal padre alle figlie). La legislazione russa proibisce l'editing del genoma umano in senso generale, ma la legge sulla fertilizzazione in vitro non vi fa esplicito riferimento, e dunque Rebrikov potrebbe trovarsi di fronte un vuoto normativo che conta di colmare chiedendo l'autorizzazione di una serie di agenzie governative, a partire dal Ministero della salute. Scienziati ed esperti di bioetica si dicono preoccupati. La tecnologia non è ancora matura, motivo per cui qualche mese fa un gruppo di importanti ricercatori del campo avevano chiesto di mettere a punto una moratoria sul suo utilizzo in embrioni destinati all'impianto in utero. Non è chiaro poi se i rischi superino i benefici. In primo luogo, la disattivazione del gene CCR5 protegge dalla trasmissione del virus dell'HIV nel 90% dei casi. In secondo luogo, il rischio di mutazioni off-target e on-target indesiderate è ancora molto alto. Rebrikov sostiene che la sua tecnica ne riduca drasticamente la frequenza, ma finora non ha pubblicato alcuno studio scientifico che lo dimostri. Nell'immagine: lo sviluppo di embrioni umani geneticamente modificati con la tecnica CRISPR per correggere una mutazione responsabile della cardiomiopatia ipertrofica (lo studio, condotto nel laboratorio di Shoukhrat Mitalipov presso la Oregon Science and Health University di Portland, risale al 2017 ed è stato pubblicato su Nature). Credit: Oregon Science and Health University. Licenza: OHSU photos usage

Dove finisce la plastica dei ricchi?

Ogni anno gli Stati Uniti producono 34,5 milioni di tonnellate di rifiuti di plastica. 1 milione di tonnellate vengono spedite fuori dal continente. Fino a qualche anno fa la maggior parte veniva spedita in Cina e Hong Kong, ma nel 2017 la Cina ha chiuso le porte a questo tipo di importazioni, autorizzando solo l'arrivo della plastica più pulita e dunque più facile da riciclare.